Skip to main content
Log in

Toward the next step in G protein-coupled receptor research: a knowledge-driven analysis for the next potential targets in drug discovery

  • Published:
Journal of Structural and Functional Genomics

Abstract

More than 800 G protein-coupled receptor (GPCR) genes have been discovered in the human genome. Towards the next step in GPCR research, we performed a knowledge-driven analysis of orphan class-A GPCRs that may serve as novel targets in drug discovery. We examined the relationship between 61 orphan class-A GPCR genes and diseases using the Online Mendelian Inheritance in Man (OMIM) database and the DDSS tool. The OMIM database contains data on disease-related variants of the genes. Particularly, the variants of GPR101, GPR161, and GPR88 are related to the genetic diseases: growth hormone-secreting pituitary adenoma 2, pituitary stalk interruption syndrome (not confirmed), and childhood-onset chorea with psychomotor retardation, respectively. On the other hand, the Drug Discovery and Diagnostic Support System (DDSS) tool suggests that 48 out of the 61 orphan receptor genes are related to diseases, judging from their co-occurrences in abstracts of biomedical literature. Notably, GPR50 and GPR3 are related to as many as 25 and 24 disease-associated keywords, respectively. GPR50 is related to 17 keywords of psychiatric disorders, whereas GPR3 is related to 11 keywords of neurological disorders. The aforementioned five orphan GPCRs were characterized genetically, structurally and functionally using the structural life science data cloud VaProS, so as to evaluate their potential as next targets in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33:17–27. doi:10.1016/j.tips.2011.09.003

    Article  PubMed  CAS  Google Scholar 

  2. Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled receptors. Drug Discov Today 7:235–246

    Article  PubMed  CAS  Google Scholar 

  3. Ngo T, Kufareva I, Coleman JLJ et al (2016) Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol. doi:10.1111/bph.13452

    PubMed  Google Scholar 

  4. Garland SL (2013) Are GPCRs still a source of new targets?. J Biomol Screen 18:947–966. doi:10.1177/1087057113498418

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad R, Wojciech S, Jockers R (2015) Hunting for the function of orphan GPCRs—beyond the search for the endogenous ligand. Br J Pharmacol 172:3212–3228. doi:10.1111/bph.12942

    Article  PubMed  CAS  Google Scholar 

  6. Amberger JS, Bocchini CA, Schiettecatte F et al (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–D798. doi:10.1093/nar/gku1205

    Article  PubMed  Google Scholar 

  7. Kwon Y, Shimizu S, Sugawara H, Miyazaki S (2014) A novel evaluation measure for identifying drug targets from the biomedical literature. IPSJ Trans Bioinform 7:16–23. doi:10.2197/ipsjtbio.7.16

    Article  Google Scholar 

  8. McEntyre J, Lipman D (2001) PubMed: bridging the information gap. Can Med Assoc J 164:1317–1319

    CAS  Google Scholar 

  9. Gojobori T, Ikeo K, Katayama Y, et al (2016) VaProS: a database-integration approach for protein/genomeinformation retrieval. J Struct Funct Genomics

  10. Okuno Y, Tamon A, Yabuuchi H et al (2008) GLIDA: GPCR–ligand database for chemical genomics drug discovery–database and tools update. Nucleic Acids Res 36:D907–D912. doi:10.1093/nar/gkm948

    Article  PubMed  CAS  Google Scholar 

  11. Pawson AJ, Sharman JL, Benson HE et al (2014) The IUPHAR/BPS guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106. doi:10.1093/nar/gkt1143

    Article  PubMed  CAS  Google Scholar 

  12. The UniProt Consortium (2014) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. Doi:10.1093/nar/gku989

    Article  PubMed Central  Google Scholar 

  13. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. doi:10.1093/nar/gkt1031

    Article  PubMed  CAS  Google Scholar 

  14. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  15. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Käll L, Krogh A, Sonnhammer ELL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35:W429–W432. doi:10.1093/nar/gkm256

    Article  PubMed  PubMed Central  Google Scholar 

  17. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  19. Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067. doi:10.1093/sysbio/sys062

    Article  PubMed  Google Scholar 

  20. Hamosh A (2015) G protein-coupled receptor 101; GPR101. Online Mendelian Inheritance in Man, OMIM. Johns Hopkins University, Baltimore. MIM Number: 300393: 06/04/2015: http://www.omim.org/entry/300393

  21. Lee DK, Nguyen T, Lynch KR et al (2001) Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 275:83–91

    Article  PubMed  CAS  Google Scholar 

  22. Bates B, Zhang L, Nawoschik S et al (2006) Characterization of Gpr101 expression and G-protein coupling selectivity. Brain Res 1087:1–14. doi:10.1016/j.brainres.2006.02.123

    Article  PubMed  CAS  Google Scholar 

  23. Nilaweera KN, Wilson D, Bell L et al (2008) G protein-coupled receptor 101 mRNA expression in supraoptic and paraventricular nuclei in rat hypothalamus is altered by pregnancy and lactation. Brain Res 1193:76–83. doi:10.1016/j.brainres.2007.11.048

    Article  PubMed  CAS  Google Scholar 

  24. Trivellin G, Daly AF, Faucz FR et al (2014) Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med 371:2363–2374. doi:10.1056/NEJMoa1408028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kamenický P, Bouligand J, Chanson P (2015) Gigantism, acromegaly, and GPR101 mutations. N Engl J Med 372:1264. doi:10.1056/NEJMc1500340#SA1

    Article  PubMed  Google Scholar 

  26. Wang T, Jiang X, Chen G, Xu J (2015) Interaction of amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated fused-in-sarcoma with proteins involved in metabolic and protein degradation pathways. Neurobiol Aging 36:527–535. doi:10.1016/j.neurobiolaging.2014.07.044

    Article  PubMed  CAS  Google Scholar 

  27. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.1038/nmeth0410-248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874. doi:10.1101/gr.176601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Choi Y, Sims GE, Murphy S et al (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688. doi:10.1371/journal.pone.0046688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gross MB (2015) G protein-coupled receptor 161: GPR161. Online Mendelian Inheritance in Man, OMIM. Johns Hopkins University, Baltimore. MIM Number: 612250: 9/30/2015: http://www.omim.org/entry/612250

  31. Matteson PG, Desai J, Korstanje R et al (2008) The orphan G protein-coupled receptor, Gpr161, encodes the vacuolated lens locus and controls neurulation and lens development. Proc Natl Acad Sci USA 105:2088–2093. doi:10.1073/pnas.0705657105

    Article  PubMed  PubMed Central  Google Scholar 

  32. Karaca E, Buyukkaya R, Pehlivan D et al (2015) Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J Clin Endocrinol Metab 100:E140–E147. doi:10.1210/jc.2014-1984

    Article  PubMed  CAS  Google Scholar 

  33. Raming K, Konzelmann S, Breer H (1998) Identification of a novel G-protein coupled receptor expressed in distinct brain regions and a defined olfactory zone. Recept Channels 6:141–151

    PubMed  CAS  Google Scholar 

  34. Croft D, Mundo AF, Haw R et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. doi:10.1093/nar/gkt1102

    Article  PubMed  CAS  Google Scholar 

  35. Mukhopadhyay S, Wen X, Ratti N et al (2013) The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152:210–223. doi:10.1016/j.cell.2012.12.026

    Article  PubMed  CAS  Google Scholar 

  36. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406. doi:10.1016/j.cell.2012.04.031

    Article  PubMed  CAS  Google Scholar 

  37. Kniffin CL (2016) G protein-coupled receptor 88; GPR88. Online Mendelian Inheritance in Man, OMIM. Johns Hopkins University, Baltimore. MIM Number: 607468: 5/5/2016: http://www.omim.org/entry/607468

  38. Alkufri F, Shaag A, Abu-Libdeh B, Elpeleg O (2016) Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities. Neurol Genet 2:e64. doi:10.1212/NXG.0000000000000064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Logue SF, Grauer SM, Paulsen J et al (2009) The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders?. Mol Cell Neurosci 42:438–447. doi:10.1016/j.mcn.2009.09.007

    Article  PubMed  CAS  Google Scholar 

  40. Hartz PA (2009) G protein-coupled receptor 50; GPR50. Online Mendelian Inheritance in Man, OMIM. Johns Hopkins University, Baltimore. MIM Number: 300207: 2/5/2009: http://www.omim.org/entry/300207

  41. Reppert SM, Weaver DR, Ebisawa T et al (1996) Cloning of a melatonin-related receptor from human pituitary. FEBS Lett 386:219–224

    Article  PubMed  CAS  Google Scholar 

  42. Levoye A, Dam J, Ayoub MA et al (2006) The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J 25:3012–3023. doi:10.1038/sj.emboj.7601193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Thomson PA, Wray NR, Thomson AM et al (2005) Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol Psychiatry 10:470–478. doi:10.1038/sj.mp.4001593

    Article  PubMed  CAS  Google Scholar 

  44. Bhattacharyya S, Luan J, Challis B et al (2006) Sequence variants in the melatonin-related receptor gene (GPR50) associate with circulating triglyceride and HDL levels. J Lipid Res 47:761–766. doi:10.1194/jlr.M500338-JLR200

    Article  PubMed  CAS  Google Scholar 

  45. Hamosh A (2009) G protein-coupled receptor 3; GPR3. Online Mendelian Inheritance in Man, OMIM. Johns Hopkins University, Baltimore. MIM Number: 600241: 2/23/2009: http://www.omim.org/entry/600241

  46. Mehlmann LM, Saeki Y, Tanaka S et al (2004) The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306:1947–1950. doi:10.1126/science.1103974

    Article  PubMed  CAS  Google Scholar 

  47. Ledent C, Demeestere I, Blum D et al (2005) Premature ovarian aging in mice deficient for Gpr3. Proc Natl Acad Sci USA 102:8922–8926. doi:10.1073/pnas.0503840102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Thathiah A, Spittaels K, Hoffmann M et al (2009) The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science 323:946–951. doi:10.1126/science.1160649

    Article  PubMed  CAS  Google Scholar 

  49. Iismaa TP, Kiefer J, Liu ML et al (1994) Isolation and chromosomal localization of a novel human G-protein-coupled receptor (GPR3) expressed predominantly in the central nervous system. Genomics 24:391–394. doi:10.1006/geno.1994.1635

    Article  PubMed  CAS  Google Scholar 

  50. Uhlenbrock K, Gassenhuber H, Kostenis E (2002) Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14:941–953

    Article  PubMed  CAS  Google Scholar 

  51. Jin C, Decker AM, Huang X-P, et al (2014) Synthesis, pharmacological characterization, and structure–activity relationship studies of small molecular agonists for the orphan GPR88 receptor. ACS Chem Neurosci 5:576–587. doi:10.1021/cn500082p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kakarala KK, Jamil K (2014) Sequence-structure based phylogeny of GPCR Class A Rhodopsin receptors. Mol Phylogenet Evol 74:66–96. doi:10.1016/j.ympev.2014.01.022

    Article  PubMed  CAS  Google Scholar 

  53. Ye C, Zhang Z, Wang Z et al (2014) Identification of a novel small-molecule agonist for human G protein-coupled receptor 3. J Pharmacol Exp Ther 349:437–443. doi:10.1124/jpet.114.213082

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Platform for Drug Discovery, Informatics, and Structural Life Science (PDIS) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Japan Agency for Medical Research and Development (AMED). This research used VaProS, a data-cloud developed by the Information Core of PDIS from MEXT and AMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Katayama, Y., Sato, T. et al. Toward the next step in G protein-coupled receptor research: a knowledge-driven analysis for the next potential targets in drug discovery. J Struct Funct Genomics 17, 111–133 (2016). https://doi.org/10.1007/s10969-016-9212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-016-9212-2

Keywords

Navigation