Skip to main content

Advertisement

Log in

A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis

  • Published:
Journal of Structural and Functional Genomics

Abstract

A two-step PCR method has been developed for the robust, high-throughput production of linear templates ready for cell-free protein synthesis. The construct made from the cDNA expresses a target protein region with N- and/or C-terminal tags. The procedure consists only of mixing, dilution, and PCR steps, and is free from cloning and purification steps. In the first step of the two-step PCR, a target region within the coding sequence is amplified using two gene-specific forward and reverse primers, which contain the linker sequences and the terminal sequences of the target region. The second PCR concatenates the first PCR product with the N- and C-terminal double-stranded fragments, which contain the linker sequences as well as the sequences for the tag(s) and the initiation and termination, respectively, for T7 transcription and ribosomal translation, and amplifies it with the universal primer. Proteins can be fused with a variety of tags, such as natural poly-histidine, glutathione-S-transferase, maltose-binding protein, and/or streptavidin-binding peptide. The two-step PCR method was successfully applied to 42 human target protein regions with various GC contents (38–77%). The robustness of the two-step PCR method against possible fluctuations of experimental conditions in practical use was explored. The second PCR product was obtained at 60–120 μg/ml, and was used without purification as a template at a concentration of 2–4 μg/ml in an Escherichia coli coupled transcription-translation system. This combination of two-step PCR with cell-free protein synthesis is suitable for the rapid production of proteins in milligram quantities for genome-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GST:

Glutathione-S-transferase

MBP:

E. coli maltose binding protein

SBP:

Streptavidin binding peptide

NHis:

Natural poly-histidine

TEV:

Tobacco etch virus

DMSO:

Dimethyl sulfoxide

HA:

Hemagglutinin

References

  1. Nameki N, Tochio N, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Fujikura Y, Saito M, Ikari M, Watanabe M, Terada T, Shirouzu M, Yoshida M, Hirota H, Tanaka A, Hayashizaki Y, Guntert P, Kigawa T, Yokoyama S (2005) Protein Sci 14:756–764

    Article  PubMed  CAS  Google Scholar 

  2. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Plant Cell 17:944–956

    Article  PubMed  CAS  Google Scholar 

  3. Li H, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Motoda Y, Kobayashi A, Terada T, Shirouzu M, Koshiba S, Lin YJ, Guntert P, Suzuki H, Hayashizaki Y, Kigawa T, Yokoyama S (2005) J Biomol NMR 32:329–334

    Article  PubMed  CAS  Google Scholar 

  4. Yabuki T, Kigawa T, Dohmae N, Takio K, Terada T, Ito Y, Laue ED, Cooper JA, Kainosho M, Yokoyama S (1998) J Biomol NMR 11:295–306

    Article  PubMed  CAS  Google Scholar 

  5. Kurimoto K, Muto Y, Obayashi N, Terada T, Shirouzu M, Yabuki T, Aoki M, Seki E, Matsuda T, Kigawa T, Okumura H, Tanaka A, Shibata N, Kashikawa M, Agata K, Yokoyama S (2005) J Struct Biol 150:58–68

    Article  PubMed  CAS  Google Scholar 

  6. Arai R, Kukimoto-Niino M, Uda-Tochio H, Morita S, Uchikubo-Kamo T, Akasaka R, Etou Y, Hayashizaki Y, Kigawa T, Terada T, Shirouzu M, Yokoyama S (2005) Protein Sci 14:1888–1893

    Article  PubMed  CAS  Google Scholar 

  7. Kigawa T, Yamaguchi-Nunokawa E, Kodama K, Matsuda T, Yabuki T, Matsuda N, Ishitani R, Nureki O, Yokoyama S (2002) J Struct Funct Genomics 2:29–35

    Article  PubMed  CAS  Google Scholar 

  8. Kang SH, Kim DM, Kim HJ, Jun SY, Lee KY, Kim HJ (2005) Biotechnol Prog 21:1412–1419

    Article  PubMed  CAS  Google Scholar 

  9. Ryabova LA, Desplancq D, Spirin AS, Pluckthun A (1997) Nat Biotechnol 15:79–84

    Article  PubMed  CAS  Google Scholar 

  10. Klammt C, Schwarz D, Lohr F, Schneider B, Dotsch V, Bernhard F (2006) FEBS J 273:4141–4153

    Article  PubMed  CAS  Google Scholar 

  11. Yokoyama S, Matsuo Y, Hirota H, Kigawa T, Shirouzu M, Kuroda Y, Kurumizaka H, Kawaguchi S, Ito Y, Shibata T, Kainosho M, Nishimura Y, Inoue Y, Kuramitsu S (2000) Prog Biophys Mol Biol 73:363–376

    Article  PubMed  CAS  Google Scholar 

  12. Endo Y, Sawasaki T (2004) J Struct Funct Genomics 5:45–57

    Article  PubMed  CAS  Google Scholar 

  13. Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) Proc Natl Acad Sci USA 99:14652–14657

    Article  PubMed  CAS  Google Scholar 

  14. Woodrow KA, Airen IO, Swartz JR (2006) J Proteome Res 5:3288–3300

    Article  PubMed  CAS  Google Scholar 

  15. Kigawa T, Muto Y, Yokoyama S (1995) J Biomol NMR 6:129–134

    Article  PubMed  CAS  Google Scholar 

  16. Nakai K, Horton P (1999) Trends Biochem Sci 24:34–36

    Article  PubMed  CAS  Google Scholar 

  17. Dougherty WG, Cary SM, Parks TD (1989) Virology 171:356–364

    Article  PubMed  CAS  Google Scholar 

  18. Chaga G, Bochkariov DE, Jokhadze GG, Hopp J, Nelson P (1999) J Chromatogr A 864:247–256

    Article  PubMed  CAS  Google Scholar 

  19. Hirota Y, Katsumata A, Takeya T (1990) Nucleic Acids Res 18:6432

    Article  PubMed  CAS  Google Scholar 

  20. Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) Protein Expr Purif 23:440–446

    Article  PubMed  CAS  Google Scholar 

  21. Matsuda T, Kigawa T, Koshiba S, Inoue M, Aoki M, Yamasaki K, Seki M, Shinozaki K, Yokoyama S (2006) J Struct Funct Genomics 7:93–100

    Article  PubMed  CAS  Google Scholar 

  22. Lin-Goerke JL, Robbins DJ, Burczak JD (1997) Biotechniques 23:409–412

    PubMed  CAS  Google Scholar 

  23. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) FEBS Lett 442:15–19

    Article  PubMed  CAS  Google Scholar 

  24. Nakano H, Kobayashi K, Ohuchi S, Sekiguchi S, Yamane T (2000) J Biosci Bioeng 90:456–458

    PubMed  CAS  Google Scholar 

  25. Esposito D, Chatterjee DK (2006) Curr Opin Biotechnol 17:353–358

    Article  PubMed  CAS  Google Scholar 

  26. Labaer J, Ramachandran N (2005) Curr Opin Chem Biol 9:14–19

    Article  PubMed  CAS  Google Scholar 

  27. Griffiths AD, Tawfik DS (2006) Trends Biotechnol 24:395–402

    Article  PubMed  CAS  Google Scholar 

  28. Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Nat Biotechnol 17:691–695

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Daisuke Kiga (Tokyo Institute of Technology) and Dr. Yasuaki Kawarasaki (University of Shizuoka) for helpful discussions; Dr. Takayoshi Matsuda (RIKEN) for providing HSQC spectra of Ras mutants; Natsuko Matsuda, Natsumi Suzuki, and Yikkiko Fujikura for their technical assistance; and Tomoko Nakayama and Azusa Ishii for expert secretarial assistance. This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analysis, Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Yokoyama.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabuki, T., Motoda, Y., Hanada, K. et al. A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis. J Struct Funct Genomics 8, 173–191 (2007). https://doi.org/10.1007/s10969-007-9038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-007-9038-z

Keywords

Navigation