Skip to main content

Advertisement

Log in

Rapid Isolation of Single-chain Antibodies for Structural Genomics

  • Published:
Journal of Structural and Functional Genomics

Abstract

High throughput approaches to structural genomics requires expression, purification, and crystallization of proteins derived from predicted open reading frames cloned into a host organism, typically E. coli. Early results from this approach suggest that the success rate of obtaining well diffracting crystals from eukaryotic proteins is disappointingly low. A proven method of improving the odds of crystallization is formation of a complex with a conformation-stabilizing partner of known structure that is easily crystallized. Such complexes are also able to engage in different crystal contacts than the original protein by itself. Fab fragments derived from monoclonal antibodies have been successfully used for this purpose for a variety of proteins, however conventional methods for the isolation of monoclonal antibodies from hybridomas are time consuming and expensive. We are exploring the use of phage display to generate recombinant antibodies to target proteins that can be used to obtain co-complexes to facilitate crystallization and structural determination. We are using a large, human single-chain Fv (scFv) library to select for antibodies that bind to a panel of Leishmania major target proteins. Thirteen out of 16 target proteins yielded good binders after three rounds of enrichment. A total of 55 distinct scFvs were identified, with five targets each yielding at least five different scFvs. Individual clones were analyzed for binding specificity and soluble scFv can be readily produced and purified via the appended His6 epitope tag. Using immunoaffinity chromatography, eight scFv target protein pairs were identified that exhibit stable complex formation and are suitable for co-crystallization trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

scFv:

single-chain antibody

VH:

immunoglobulin heavy chain variable region

VL:

immunoglobulin light chain variable region

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

ELISA:

enzyme-linked immunosorbent assay

IMAC:

immobilized metal ion chromatography

ORF:

open reading frame

References

  1. N.E. Chayen (2002) Trends Biotechnol. 20 98 Occurrence Handle10.1016/S0167-7799(02)01916-9 Occurrence Handle11841858

    Article  PubMed  Google Scholar 

  2. L. Sheridan C.M. Wilmot K.D. Cromie P. Logt Particlevan der S.E.V. Phillips (2002) Acta Crystallogr. D 58 374–376 Occurrence Handle10.1107/S0907444901021503 Occurrence Handle11807281

    Article  PubMed  Google Scholar 

  3. T.J. Vaughan A.J. Williams K. Pritchard J.K. Osbourn A.R. Pope J.C. Earnshaw J. McCafferty R.A. Hodits J. Wilton K.S. Johnson (1996) Nat. Biotechnol. 14 309–314 Occurrence Handle10.1038/nbt0396-309 Occurrence Handle9630891

    Article  PubMed  Google Scholar 

  4. M.D. Sheets P. Amersdorfer R. Finnern P. Sargent E. Lindquist R. Schier G. Hemingsen C. Wong J.C. Gerhart J.D. Marks E. Lindqvist (1998) Proc. Natl. Acad. Sci. USA 95 6157–6162 Occurrence Handle10.1073/pnas.95.11.6157 Occurrence Handle9600934

    Article  PubMed  Google Scholar 

  5. A. Pluckthun (1994) Bioprocess Technol. (New York) 19 233–252

    Google Scholar 

  6. J. Ay T. Keitel G. Kuttner H. Wessner C. Scholz M. Hahn W. Hohne (2000) J. Mol. Biol. 301 239–246 Occurrence Handle10.1006/jmbi.2000.3971 Occurrence Handle10926506

    Article  PubMed  Google Scholar 

  7. Y. Chen C. Wiesmann G. Fuh B. Li H.W. Christinger P. McKay A.M. Vos Particlede H.B. Lowman (1999) J. Mol. Biol. 293 865–881 Occurrence Handle10.1006/jmbi.1999.3192 Occurrence Handle10543973

    Article  PubMed  Google Scholar 

  8. L.C. Simmons D. Reilly L. Klimowski T.S. Raju G. Meng P. Sims K. Hong R.L. Shields L.A. Damico P. Rancatore D.G. Yansura (2002) J. Immunol. Methods 263 133–147 Occurrence Handle10.1016/S0022-1759(02)00036-4 Occurrence Handle12009210

    Article  PubMed  Google Scholar 

  9. C.G. Haidaris J. Malone L.A. Sherrill J.M. Bliss A.A. Gaspari R.A. Insel M.A. Sullivan (2001) J. Immunol. Methods 257 185–202 Occurrence Handle10.1016/S0022-1759(01)00463-X Occurrence Handle11687252

    Article  PubMed  Google Scholar 

  10. C.F. Barbas Suffix3rd D.R. Burton G.J. Scott J.K. Silverman (2001) Phage Display: A Laboratory Manual Cold Spring Harbor Laboratory Press New York

    Google Scholar 

  11. G. Aggarwal W.E.A. P.D. McDonagh P.J. Myler (2003) BMC Bioinformatics 4 23–27 Occurrence Handle10.1186/1471-2105-4-23 Occurrence Handle12793912

    Article  PubMed  Google Scholar 

  12. A. Alexandrov M. Vignali D.J. LaCount E. Quartley C. Vries Particlede D. Rosa ParticleDe J. Babulski S.F. Mitchell L.W. Schoenfeld S. Fields W.G. Hol M.E. Dumont E.M. Phizicky E.J. Grayhack (2004) Mol. Cell Proteomics 3 934–938 Occurrence Handle10.1074/mcp.T400008-MCP200 Occurrence Handle15240823

    Article  PubMed  Google Scholar 

  13. K.S. Prickett D.C. Amberg T.P. Hopp (1989) Biotechniques 7 580–589 Occurrence Handle2698650

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, C., Bloedorn, L. & Sullivan, M.A. Rapid Isolation of Single-chain Antibodies for Structural Genomics. J Struct Funct Genomics 6, 171–175 (2005). https://doi.org/10.1007/s10969-005-5246-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-005-5246-6

Key words

Navigation