Skip to main content

Advertisement

Log in

Comparison of Small- and Large-scale Expression of Selected Pyrococcus furiosus Genes as an Aid to High-throughput Protein Production

  • Published:
Journal of Structural and Functional Genomics

Abstract

As the natural extension of the genomic sequencing projects, the goal of the various world-wide Structural Genomics projects is development of techniques for high throughput (HTP) cloning, protein overexpression, purification and structural determination, with the ultimate goal of determining all possible protein structures. Rapid (small-scale) screening of potential expression clones under different growth conditions is presumed to be possible and a viable way to increase throughput of protein expression. In order to test the utility of screening for soluble, heterologous protein expression, we have compared the production of recombinant proteins on a small scale (1 ml cultures in 96-well plates) in Escherichia coli under two growth conditions [a rich medium and a defined (minimal) medium] using an enzyme-linked immunosorbent assay (ELISA) against the affinity tag, with the amount of recombinant protein produced during the large-scale (500 ml) growth of E. coli. The large-scale expression products were examined after a single step affinity purification by visualization on SDS-PAGE gels. Of the open reading frames that were successfully expressed on the 1 ml scale as judged by immunodetection, 80% of them successfully scaled-up to 500 ml in a rich medium and 81% of them scaled-up in a defined medium. This is significantly higher than would be expected by a randomly selected expression condition and validates the use of small-scale expression as a screening tool for more efficient protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

c f :

final concentration

ELISA:

enzyme-linked immunosorbent assay

HTP:

high throughput

IMAC:

immobilized metal affinity chromatography

IPTG:

isopropyl-β-D-thiogalactopyranoside

LSE:

large-scale expression

NMR:

nuclear magnetic resonance

ORF:

open reading frame

PBS:

phosphate-buffered saline

PCR:

polymerase chain reaction

PMSF:

phenylmethanesulfonyl fluoride

pNPP:

p-nitrophenyl phosphate

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SSE:

small-scale expression

References

  1. M.W.W. Adams H.A. Dailey L.J. Delucas M. Luo J.H. Prestegard J.P. Rose B.C. Wang (2003) Acc. Chem. Res. 36 191–198 Occurrence Handle10.1021/ar0101382 Occurrence Handle12641476

    Article  PubMed  Google Scholar 

  2. G. Fiala K.O. Stetter (1986) Arch. Microbiol. 145 56–61 Occurrence Handle10.1007/BF00413027

    Article  Google Scholar 

  3. F.T. Robb D.L. Maeder J.R. Brown J. DiRuggiero M.D. Stump R.K. Yeh R.B. Weiss D.M. Dunn (2001) Methods Enzymol. 330 134–157 Occurrence Handle11210495

    PubMed  Google Scholar 

  4. Weiss, R.B., Dunn, D.M., Robb, F.T. and Brown, J.R. (2003) NCBI GenBank direct submission

  5. S.C. Makrides (1996) Microbiol. Rev. 60 512–538 Occurrence Handle8840785

    PubMed  Google Scholar 

  6. G. Hannig S.C. Makrides (1998) TIBTECH 16 54–60

    Google Scholar 

  7. F.A.O. Marston (1986) Biochem. J. 240 1–12 Occurrence Handle3548705

    PubMed  Google Scholar 

  8. H. Lilie E. Schwarz R. Rudolph (1998) Curr. Opin. Biotech. 9 497–501 Occurrence Handle10.1016/S0958-1669(98)80035-9 Occurrence Handle9821278

    Article  PubMed  Google Scholar 

  9. K-J. Kim H.E. Kim K-H. Lee W. Han M-J. Yi J. Jeong B-H. Oh (2004) Protein Sci. 13 1698–1703 Occurrence Handle10.1110/ps.04644504 Occurrence Handle15133160

    Article  PubMed  Google Scholar 

  10. R.K.C. Knaust P. Nordlund (2001) Anal. Biochem. 297 79–85 Occurrence Handle10.1006/abio.2001.5331 Occurrence Handle11567530

    Article  PubMed  Google Scholar 

  11. M. Boettner B. Prinz C. Holz U. Stahl C. Lang (2002) J. Biotechnol. 99 51–62 Occurrence Handle10.1016/S0168-1656(02)00157-8 Occurrence Handle12204557

    Article  PubMed  Google Scholar 

  12. S.P. Chambers D.A. Austen J.R. Fulghum W.M. Kim (2004) Protein Expr. Purif. 36 40–47 Occurrence Handle10.1016/j.pep.2004.03.003 Occurrence Handle15177282

    Article  PubMed  Google Scholar 

  13. H. Nguyen B. Martinez N. Oganesyan R. Kim (2004) J. Struct. Funct. Genomics 5 23–27 Occurrence Handle10.1023/B:JSFG.0000029195.73810.86 Occurrence Handle15263840

    Article  PubMed  Google Scholar 

  14. L. Dieckman M. Gu L. Stols M.I. Donnelly F.R. Collart (2002) Protein Expr. Purif. 25 1–7 Occurrence Handle10.1006/prep.2001.1602 Occurrence Handle12071692

    Article  PubMed  Google Scholar 

  15. Y.-P. Shih W.-M. Kung J.-C. Chen C.-H. Yeh A.H.-J. Wang T.-F. Wang (2002) Protein Sci. 11 1714–1719 Occurrence Handle10.1110/ps.0205202 Occurrence Handle12070324

    Article  PubMed  Google Scholar 

  16. G.E. Folkers B.N.M. Buuren Particlevan R. Kaptein (2004) J. Struct. Funct. Genomics 5 119–131 Occurrence Handle10.1023/B:JSFG.0000029200.66197.0c Occurrence Handle15263851

    Article  PubMed  Google Scholar 

  17. J. Sambrook D.W. Russell (2001) Molecular Cloning: A Laboratory Manual EditionNumber3 Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  18. M.M. Carrió A. Villaverde (2002) J. Biotechnol. 96 3–12 Occurrence Handle10.1016/S0168-1656(02)00032-9 Occurrence Handle12142138

    Article  PubMed  Google Scholar 

  19. A.P.J. Middelberg (2002) TRENDS Biotechnol. 20 437–443 Occurrence Handle10.1016/S0167-7799(02)02047-4 Occurrence Handle12220907

    Article  PubMed  Google Scholar 

  20. D. Kihara T. Shimizu M. Kanehisa (1998) Protein Eng. 11 961–970 Occurrence Handle10.1093/protein/11.11.961 Occurrence Handle9876916

    Article  PubMed  Google Scholar 

  21. C. Pasquier S.J. Hamodrakas (1999) Protein Eng. 12 631–634 Occurrence Handle10.1093/protein/12.8.631 Occurrence Handle10469822

    Article  PubMed  Google Scholar 

  22. M. Gomi F. Akazawa S. Mitaku (2000) Genome Inform. 11 414–415

    Google Scholar 

  23. B. Miroux J.E. Walker (1996) J. Mol. Biol. 260 289–298 Occurrence Handle10.1006/jmbi.1996.0399 Occurrence Handle8757792

    Article  PubMed  Google Scholar 

  24. G.J.S. Fowler A.T. Gardiner R.C. Mackenzie S.J. Barratt A.E. Simmons W.H.J. Westerhuis R.J. Cogdell C.N. Hunter (1995) J. Biol. Chem. 270 23875–23882 Occurrence Handle10.1074/jbc.270.40.23875 Occurrence Handle7559566

    Article  PubMed  Google Scholar 

  25. E. Kopetzki G. Schmacher P. Buckel (1989) Mol. Gen. Genet. 216 149–155 Occurrence Handle10.1007/BF00332244 Occurrence Handle2659969

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. W. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugar, F.J., Jenney, F.E., Poole, F.L. et al. Comparison of Small- and Large-scale Expression of Selected Pyrococcus furiosus Genes as an Aid to High-throughput Protein Production. J Struct Funct Genomics 6, 149–158 (2005). https://doi.org/10.1007/s10969-005-3341-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-005-3341-3

Key words

Navigation