Skip to main content

Advertisement

Log in

High-throughput Protein Production for X-ray Crystallography and Use of Size Exclusion Chromatography to Validate or Refute Computational Biological Unit Predictions

  • Published:
Journal of Structural and Functional Genomics

Abstract

The production of large numbers of highly purified proteins for X-ray crystallography is a significant bottleneck in structural genomics. At the Joint Center for Structural Genomics (JCSG; http://www.jcsg.org), specific automated protein expression, purification, and analytical methods are being utilized to study the proteome of Thermotoga maritima. Anion exchange and size exclusion chromatography (SEC), intended for the production of highly purified proteins, have been automated and the procedures are described here in detail. Analytical SEC has been included as a standard quality control test. A biological unit (BU) is the macromolecule that has been proven or is presumed to be functional. Correct assignment of BUs from protein structures can be difficult. BU predictions obtained via the Protein Quaternary Structure file server (PQS; http://pqs.ebi.ac.uk/) were compared to SEC data for 16 representative T. maritima proteins whose structures were solved at the JCSG, revealing an inconsistency in five cases. Herein, we report that SEC can be used to validate or disprove PQS-derived oligomeric models. A substantial amount of associated SEC and structural data should enable us to use certain PQS parameters to gauge the accuracy of these computational models and to generally improve their predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Berman J. Westbrook Z. Feng G. Gilliland T.N. Bhat H. Weissig I.N. Shindyalov P.E. Bourne (2000) Nucleic Acids Res. 28 235–242 Occurrence Handle10.1093/nar/28.1.235 Occurrence Handle10592235

    Article  PubMed  Google Scholar 

  2. K. Henrick J.M. Thornton (1998) Trends Biochem. Sci. 23 358–361 Occurrence Handle10.1016/S0968-0004(98)01253-5 Occurrence Handle9787643

    Article  PubMed  Google Scholar 

  3. S.A. Lesley P. Kuhn A. Godzik A.M. Deacon I. Mathews A. Kreusch G. Spraggon H.E. Klock D. McMullan T. Shin J. Vincent A. Robb L.S. Brinen M.D. Miller T.M. McPhillips M.A. Miller D. Scheibe J.M. Canaves C. Guda L. Jaroszewski T.L. Selby M.A. Elsliger J. Wooley S.S. Taylor K.O. Hodgson I.A. Wilson P.G. Schultz R.C. Stevens (2002) Proc. Natl. Acad. Sci. USA 99 11664–11669 Occurrence Handle10.1073/pnas.142413399 Occurrence Handle12193646

    Article  PubMed  Google Scholar 

  4. M. DiDonato A.M. Deacon H.E. Klock D. McMullan S.A. Lesley (2004) J. Struct. Funct. Genomics 5 133–146 Occurrence Handle10.1023/B:JSFG.0000029194.04443.50 Occurrence Handle15263852

    Article  PubMed  Google Scholar 

  5. W.A. Hendrickson J.R. Horton D.M. LeMaster (1990) EMBO J. 9 1665–1672 Occurrence Handle2184035

    PubMed  Google Scholar 

  6. K.E. Nelson R.A. Clayton S.R. Gill M.L. Gwinn R.J. Dodson D.H. Haft E.K. Hickey J.D. Peterson W.C. Nelson K.A. Ketchum L. McDonald T.R. Utterback J.A. Malek K.D. Linher M.M. Garrett A.M. Stewart M.D. Cotton M.S. Pratt C.A. Phillips D. Richardson J. Heidelberg G.G. Sutton R.D. Fleischmann J.A. Eisen O. White S.L. Salzberg H.O. Smith J.C. Venter C.M. Fraser (1999) Nature 399 323–329 Occurrence Handle10.1038/20601 Occurrence Handle10360571

    Article  PubMed  Google Scholar 

  7. I. Levin R. Schwarzenbacher D. McMullan P. Abdubek E. Ambing T. Biorac J. Cambell J.M. Canaves H.J. Chiu X. Dai A.M. Deacon M. DiDonato M.A. Elsliger A. Godzik C. Grittini S.K. Grzechnik E. Hampton L. Jaroszewski C. Karlak H.E. Klock E. Koesema A. Kreusch P. Kuhn S.A. Lesley T.M. McPhillips M.D. Miller A. Morse K. Moy J. Ouyang R. Page K. Quijano R. Reyes A. Robb E. Sims G. Spraggon R.C. Stevens H. Bedem Particlevan den J. Velasquez J. Vincent F. Delft Particlevon X. Wang B. West G. Wolf Q. Xu K.O. Hodgson J. Wooley I.A. Wilson (2004) Proteins 56 629–633 Occurrence Handle10.1002/prot.20163 Occurrence Handle15229897

    Article  PubMed  Google Scholar 

  8. W.J. Henzel T.M. Billeci J.T. Stults S.C. Wong C. Grimley C. Watanabe (1993) Proc. Natl. Acad. Sci. USA 90 5011–5015 Occurrence Handle8506346

    PubMed  Google Scholar 

  9. R. Aebersold D.R. Goodlett (2001) Chem. Rev. 101 269–295 Occurrence Handle10.1021/cr990076h Occurrence Handle11712248

    Article  PubMed  Google Scholar 

  10. J. Kyte R.F. Doolittle (1982) J. Mol. Biol. 157 105–132 Occurrence Handle10.1016/0022-2836(82)90515-0 Occurrence Handle7108955

    Article  PubMed  Google Scholar 

  11. L. Hennig (1999) BioTechniques 26 1170–1172 Occurrence Handle10376156

    PubMed  Google Scholar 

  12. B. Lee F.M. Richards (1971) J. Mol. Biol. 55 379–400 Occurrence Handle10.1016/0022-2836(71)90324-X Occurrence Handle5551392

    Article  PubMed  Google Scholar 

  13. D. Eisenberg A.D. McLachlan (1986) Nature 319 199–203 Occurrence Handle10.1038/319199a0 Occurrence Handle3945310

    Article  PubMed  Google Scholar 

  14. InstitutionalAuthorNameCollaborative Computational Project Number 4 (1994) Acta Cryst. D50 760–763

    Google Scholar 

  15. J.A. Lodge T. Maier W. Liebl V. Hoffmann N. Strater (2003) J. Biol. Chem. 278 19151–19158 Occurrence Handle10.1074/jbc.M211626200 Occurrence Handle12588867

    Article  PubMed  Google Scholar 

  16. L. Jaroszewski W. Li A. Godzik (2002) Protein Sci. 11 1702–1713 Occurrence Handle10.1110/ps.4820102 Occurrence Handle12070323

    Article  PubMed  Google Scholar 

  17. S. Fushinobu H. Shoun T. Wakagi (2003) Biochemistry 42 11707–11715 Occurrence Handle10.1021/bi034220b Occurrence Handle14529281

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Lesley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMullan, D., Canaves, J.M., Quijano, K. et al. High-throughput Protein Production for X-ray Crystallography and Use of Size Exclusion Chromatography to Validate or Refute Computational Biological Unit Predictions. J Struct Funct Genomics 6, 135–141 (2005). https://doi.org/10.1007/s10969-005-2898-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-005-2898-1

Key words

Navigation