Skip to main content
Log in

Removal behavior and mechanisms of U(VI) in aqueous solution using aloe vera biochar with highly developed porous structure

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Herein, a novel aloe vera biochar (PBC) with highly developed porous structure was prepared to remove U(VI) in aqueous solution. The specific surface area of PBC was 577.3 m2/g, which was 100 times that of unmodified biochar. It had good environmental adaptability because of its fast removal rate, excellent adsorption performance in a wide pH range and selective adsorption capacity. And it could be recycled. The mechanism of the U(VI) adsorption by PBC was the surface complexation, in which the phosphate groups played a major role. Therefore, the development of PBC expanded the potential application of aloe vera wastes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Su M, Tsang DCW, Ren X, Shi Q, Tang J, Zhang H, Kong L, Hou L, Song G, Chen D (2019) Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: evaluation on characteristics, mechanisms and performance. Environ Pollut 254(Pt A):112891. https://doi.org/10.1016/j.envpol.2019.07.059

    Article  CAS  PubMed  Google Scholar 

  2. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, Du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour Technol 256:247–253. https://doi.org/10.1016/j.biortech.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  3. Aljarrah MT, Al-Harahsheh MS, Alrebaki MA, Mayyas M (2020) Concentrative isolation of uranium traces in aqueous solutions via resurfaced-magnetic carbon nanotube suspension. J Environ Manage 271:110970. https://doi.org/10.1016/j.jenvman.2020.110970

    Article  CAS  PubMed  Google Scholar 

  4. Zhu J, Liu Q, Li Z, Liu J, Zhang H, Li R, Wang J (2018) Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes. J Hazard Mater 353:9–17. https://doi.org/10.1016/j.jhazmat.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  5. Yang P, Zhang H, Liu Q, Liu J, Chen R, Yu J, Hou J, Bai X, Wang J (2019) Nano-sized architectural design of multi-activity graphene oxide (GO) by chemical post-decoration for efficient uranium(VI) extraction. J Hazard Mater 375:320–329. https://doi.org/10.1016/j.jhazmat.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  6. Zhao C, Liu J, Deng Y, Tian Y, Zhang G, Liao J, Yang J, Yang Y, Liu N, Sun Q (2019) Uranium (VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117624

    Article  Google Scholar 

  7. Zhang Q, Wang Y, Wang Z, Zhang Z, Wang X, Yang Z (2021) Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.156993

    Article  Google Scholar 

  8. Li L, Yang M, Lu Q, Zhu W, Ma H, Dai L (2019) Oxygen-rich biochar from torrefaction: a versatile adsorbent for water pollution control. Bioresour Technol 294:122142. https://doi.org/10.1016/j.biortech.2019.122142

    Article  CAS  PubMed  Google Scholar 

  9. Wei D, Li B, Huang H, Luo L, Zhang J, Yang Y, Guo J, Tang L, Zeng G, Zhou Y (2018) Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs. Chemosphere 197:165–180. https://doi.org/10.1016/j.chemosphere.2017.12.193

    Article  CAS  PubMed  Google Scholar 

  10. Giannakoudakis DA, Hosseini-Bandegharaei A, Tsafrakidou P, Triantafyllidis KS, Kornaros M, Anastopoulos I (2018) Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review. J Environ Manag 227:354–364. https://doi.org/10.1016/j.jenvman.2018.08.064

    Article  CAS  Google Scholar 

  11. Guilhen SN, Mašek O, Ortiz N, Izidoro JC, Fungaro DA (2019) Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass Bioenerg 122:381–390. https://doi.org/10.1016/j.biombioe.2019.01.008

    Article  CAS  Google Scholar 

  12. Zhao L, Zheng W, Masek O, Chen X, Gu B, Sharma BK, Cao X (2017) Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity. J Environ Qual 46(2):393–401. https://doi.org/10.2134/jeq2016.09.0344

    Article  CAS  PubMed  Google Scholar 

  13. Chu G, Zhao J, Huang Y, Zhou D, Liu Y, Wu M, Peng H, Zhao Q, Pan B, Steinberg CEW (2018) Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ Pollut 240:1–9. https://doi.org/10.1016/j.envpol.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  14. Shao D, Li Y, Wang X, Hu S, Wen J, Xiong J, Asiri AM, Marwani HM (2017) Phosphate-functionalized polyethylene with high adsorption of uranium(VI). ACS Omega 2(7):3267–3275. https://doi.org/10.1021/acsomega.7b00375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li L, Ma R, Wen T, Gu P, Zhang S, Zheng M, Wu X, Zhang X, Hayat T, Wang X (2019) Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment. Sci Total Environ 694:133697. https://doi.org/10.1016/j.scitotenv.2019.133697

    Article  CAS  PubMed  Google Scholar 

  16. Ma D, Hu S, Li Y, Xu Z (2019) Adsorption of uranium on phosphoric acid-activated peanut shells. Sep Sci Technol 55(9):1623–1635. https://doi.org/10.1080/01496395.2019.1606016

    Article  CAS  Google Scholar 

  17. Pan N, Jin Y, Wang X, Hu X, Chi F, Zou H, Xia C (2018) A Self-assembled supramolecular material containing phosphoric acid for ultrafast and efficient capture of uranium from acidic solutions. ACS Sustain Chem Eng 7(1):950–960. https://doi.org/10.1021/acssuschemeng.8b04596

    Article  CAS  Google Scholar 

  18. Liu X, Li J, Wang X, Chen C, Wang X (2015) High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. J Nucl Mater 466:56–64. https://doi.org/10.1016/j.jnucmat.2015.07.027

    Article  CAS  Google Scholar 

  19. Hu R, Xiao J, Wang T, Chen G, Chen L, Tian X (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122388

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dai L, Li L, Zhu W, Ma H, Huang H, Lu Q, Yang M, Ran Y (2020) Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(VI) adsorption. Bioresour Technol 298:122576. https://doi.org/10.1016/j.biortech.2019.122576

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851. https://doi.org/10.1016/j.biortech.2016.05.057

    Article  CAS  PubMed  Google Scholar 

  22. Xia Y, Yang T, Zhu N, Li D, Chen Z, Lang Q, Liu Z, Jiao W (2019) Enhanced adsorption of Pb(II) onto modified hydrochar: modeling and mechanism analysis. Bioresour Technol 288:121593. https://doi.org/10.1016/j.biortech.2019.121593

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Hu J, Yao L, Shen Q, An L, Wang X (2020) Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: competitive adsorption and mechanism studies. J Hazard Mater 390:122127. https://doi.org/10.1016/j.jhazmat.2020.122127

    Article  CAS  PubMed  Google Scholar 

  24. Turk Sekulic M, Boskovic N, Slavkovic A, Garunovic J, Kolakovic S, Pap S (2019) Surface functionalised adsorbent for emerging pharmaceutical removal: adsorption performance and mechanisms. Process Saf Environ Prot 125:50–63. https://doi.org/10.1016/j.psep.2019.03.007

    Article  CAS  Google Scholar 

  25. Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  26. Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46(15):2113–2123. https://doi.org/10.1016/j.carbon.2008.09.010

    Article  CAS  Google Scholar 

  27. Uchimiya M, Hiradate S (2014) Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J Agric Food Chem 62(8):1802–1809. https://doi.org/10.1021/jf4053385

    Article  CAS  PubMed  Google Scholar 

  28. Deng Y, Huang S, Dong C, Meng Z, Wang X (2020) Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresour Technol 303:122853. https://doi.org/10.1016/j.biortech.2020.122853

    Article  CAS  PubMed  Google Scholar 

  29. Shan R, Shi Y, Gu J, Wang Y, Yuan H (2020) Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chin J Chem Eng 28(5):1375–1383. https://doi.org/10.1016/j.cjche.2020.02.012

    Article  CAS  Google Scholar 

  30. Zhang D, Wang T, Zhi J, Zheng Q, Chen Q, Zhang C, Li Y (2020) Utilization of jujube biomass to prepare biochar by pyrolysis and activation: characterization, adsorption characteristics, and mechanisms for nitrogen. Materials (Basel). https://doi.org/10.3390/ma13245594

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim WK, Shim T, Kim YS, Hyun S, Ryu C, Park YK, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270. https://doi.org/10.1016/j.biortech.2013.03.186

    Article  CAS  PubMed  Google Scholar 

  32. Kuo H-C, Lin Y-G, Chiang C-L, Liu S-H (2021) FeN@N-doped graphitic biochars derived from hydrothermal-microwave pyrolysis of cellulose biomass for fuel cell catalysts. J Anal Appl Pyrol. https://doi.org/10.1016/j.jaap.2020.104991

    Article  Google Scholar 

  33. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, Park YK, Liu Z, Wong CS, Peng W (2020) Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J Hazard Mater 390:121649. https://doi.org/10.1016/j.jhazmat.2019.121649

    Article  CAS  PubMed  Google Scholar 

  34. Liu L, Li Y, Fan S (2019) Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes. https://doi.org/10.3390/pr7120891

    Article  Google Scholar 

  35. Huang Y, Li S, Lin H, Chen J (2014) Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H3PO4 activation for Pb(II) removal. Appl Surf Sci 317:422–431. https://doi.org/10.1016/j.apsusc.2014.08.152

    Article  CAS  Google Scholar 

  36. Huang S, Pang H, Li L, Jiang S, Wen T, Zhuang L, Hu B, Wang X (2018) Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chem Eng J 353:157–166. https://doi.org/10.1016/j.cej.2018.07.129

    Article  CAS  Google Scholar 

  37. Ying D, Hong P, Jiali F, Qinqin T, Yuhui L, Youqun W, Zhibin Z, Xiaohong C, Yunhai L (2020) Removal of uranium using MnO2/orange peel biochar composite prepared by activation and in-situ deposit in a single step. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105772

    Article  Google Scholar 

  38. Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744. https://doi.org/10.1016/j.cej.2018.01.089

    Article  CAS  Google Scholar 

  39. Li X, Pan H, Yu M, Wakeel M, Luo J, Alharbi NS, Liao Q, Liu J (2018) Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch. J Mol Liq 269:64–71. https://doi.org/10.1016/j.molliq.2018.08.039

    Article  CAS  Google Scholar 

  40. Liao J, Zhang Y (2020) Effective removal of uranium from aqueous solution by using novel sustainable porous Al2O3 materials derived from different precursors of aluminum. Inorg Chem Front 7(3):765–776. https://doi.org/10.1039/c9qi01426h

    Article  CAS  Google Scholar 

  41. El-sherif RM, Lasheen TA, Jebril EA (2017) Fabrication and characterization of CeO 2 -TiO 2 -Fe 2 O 3 magnetic nanoparticles for rapid removal of uranium ions from industrial waste solutions. J Mol Liq 241:260–269. https://doi.org/10.1016/j.molliq.2017.05.119

    Article  CAS  Google Scholar 

  42. Liu L, Lin X, Li M, Chu H, Wang H, Xie Y, Du Z, Liu M, Liang L, Gong H, Zhou J, Li Z, Luo X (2020) Microwave-assisted hydrothermal synthesis of carbon doped with phosphorus for uranium(VI) adsorption. J Radioanal Nucl Chem 327(1):73–89. https://doi.org/10.1007/s10967-020-07453-6

    Article  CAS  Google Scholar 

  43. Li M, Liu H, Chen T, Dong C, Sun Y (2019) Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci Total Environ 651(Pt 1):1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Ye T, Wang Y, Zhou L, Liu Z (2021) Adsorption of uranium(VI) from aqueous solution by phosphorylated luffa rattan activated carbon. J Radioanal Nucl Chem 327(3):1267–1275. https://doi.org/10.1007/s10967-020-07592-w

    Article  CAS  Google Scholar 

  45. Zhou Y, Xiao J, Hu R, Wang T, Shao X, Chen G, Chen L, Tian X (2020) Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.112659

    Article  Google Scholar 

  46. Albayari M, Nazal MK, Khalili FI, Nordin N, Adnan R (2021) Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water. J Radioanal Nucl Chem 328(2):669–678. https://doi.org/10.1007/s10967-021-07667-2

    Article  CAS  Google Scholar 

  47. Alahabadi A, Singh P, Raizada P, Anastopoulos I, Sivamani S, Dotto GL, Landarani M, Ivanets A, Kyzas GZ, Hosseini-Bandegharaei A (2020) Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.125516

    Article  Google Scholar 

  48. Tao Y, Han S, Zhang Q, Yang Y, Shi H, Akindolie MS, Jiao Y, Qu J, Jiang Z, Han W, Zhang Y (2020) Application of biochar with functional microorganisms for enhanced atrazine removal and phosphorus utilization. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120535

    Article  Google Scholar 

  49. Chen Y, Ning P, Miao R, He L, Guan Q (2021) Resource utilization of agricultural residues: one-step preparation of biochar derived from Pennisetum giganteum for efficiently removing chromium from water in a wide pH range. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-15388-y

    Article  PubMed  PubMed Central  Google Scholar 

  50. Deng J, Li X, Liu Y, Zeng G, Liang J, Song B, Wei X (2018) Alginate-modified biochar derived from Ca(II)-impregnated biomass: Excellent anti-interference ability for Pb(II) removal. Ecotoxicol Environ Saf 165:211–218. https://doi.org/10.1016/j.ecoenv.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Lin X, He Y, Luo X (2019) Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int J Biol Macromol 136:445–459. https://doi.org/10.1016/j.ijbiomac.2019.05.165

    Article  CAS  PubMed  Google Scholar 

  52. Liu S, Li J, Xu S, Wang M, Zhang Y, Xue X (2019) A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour Technol 282:48–55. https://doi.org/10.1016/j.biortech.2019.02.092

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Li M, Li Y, Liu Y, Chen Y, Li H, Li L, Xu F, Jiang H, Chen L (2021) Hydroxyapatite modified sludge-based biochar for the adsorption of Cu(2+) and Cd(2+): adsorption behavior and mechanisms. Bioresour Technol 321:124413. https://doi.org/10.1016/j.biortech.2020.124413

    Article  CAS  PubMed  Google Scholar 

  54. Pap S, Taggart MA, Shearer L, Li Y, Radovic S, Turk Sekulic M (2021) Removal behaviour of NSAIDs from wastewater using a P-functionalised microporous carbon. Chemosphere 264(Pt 1):128439. https://doi.org/10.1016/j.chemosphere.2020.128439

    Article  CAS  PubMed  Google Scholar 

  55. Tian Y, Liu L, Ma F, Zhu X, Dong H, Zhang C, Zhao F (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538. https://doi.org/10.1016/j.jhazmat.2021.126538

    Article  CAS  PubMed  Google Scholar 

  56. Nie X, Jiang Y, Dong F, Cheng W, Wang J, Ding C, Liu M, Zhang Y, Xia X (2021) Amide and phosphate groups modified bifunctional luffa fiber for highly efficient removal of U(VI) from real uranium wastewater. J Radioanal Nucl Chem 328(2):591–604. https://doi.org/10.1007/s10967-021-07670-7

    Article  CAS  Google Scholar 

  57. Ahmed W, Nunez-Delgado A, Mehmood S, Ali S, Qaswar M, Shakoor A, Chen DY (2021) Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism. Environ Res 201:111518. https://doi.org/10.1016/j.envres.2021.111518

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the Project supported by the Natural Science Foundation of Hunan Province, China (No. 2020JJ30579, No. 2020JJ5492); the National Natural Science Foundation of China (No. 51904155).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CW, GW and SX; Methodology: CW, GW and SX; Formal analysis and investigation: CW; Writing -original draft preparation: CW; Funding acquisition: SX and GW; Resources: SX and GW; Supervision: JW and YG; Writing—review and editing: CW, SX, GW, YG and JW.

Corresponding author

Correspondence to Shuibo Xie.

Ethics declarations

Conflict of interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, G., Xie, S. et al. Removal behavior and mechanisms of U(VI) in aqueous solution using aloe vera biochar with highly developed porous structure. J Radioanal Nucl Chem 331, 2273–2283 (2022). https://doi.org/10.1007/s10967-022-08281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08281-6

Keywords

Navigation