Skip to main content
Log in

Effect of moisture content on the 222Rn mass exhalation rates for different grain-size samples of red brick and cement mortar used in Qena city, Egypt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Four different grain size fractions (0.2–0.5, 0.5–1, 1–1.8, 1.8–2 mm) of red brick and cement mortar samples at different moisture (0%, 5%, 10%, 15%, 20%) content relative to the sample mass were subjected to measuring their 222Rn mass exhalation rates using Alpha-Guard radon monitor, PQ 2000 PRO. The results indicated an inverse proportion between the exhalation rate and the particles size. For all studied grain size fractions, the change of the moisture content clearly affected the 222Rn mass exhalation rates. The exhalation rate reached its maximum value, which is two times higher than its value for the dry sample, by increasing the moisture content from 0 to 15% for red brick and from 0 to 5% for cement mortar, respectively. The current study results showed good agreement with those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Research Council US (1999) Health risks of exposure to radon. BEIR VI. The National Academies Press, Washington

    Google Scholar 

  2. Soniya SR, Abrahamb S, Khandakerc MU, Jojo PJ (2021) Investigation of diffusive transport of radon through bricks. Radiat Phys Chem 178:108955

    Article  CAS  Google Scholar 

  3. Szewczak K, Jednoróg S, Wołoszczuk K, Gluba Ł, Przysucha AR, Łukowski M (2021) Radon emission fluctuation as a result of biochar application into the soil. Sci Rep 11:13810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR (2008) Sources and effects of ionizing radiation. Report to the General Assembly. United Nations, New York

    Google Scholar 

  5. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case–control studies. Br Med J 330:223–226

    Article  CAS  Google Scholar 

  6. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW et al (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case– control studies. Epidemiology 16(2):137–145

    Article  PubMed  Google Scholar 

  7. Sahoo BK, Sapra BK, Gaware JJ, Kanse SD, Mayya YS (2011) A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples. Sci Total Environ 409:2635–2641

    Article  CAS  PubMed  Google Scholar 

  8. Kim SH, Hwang WJ, Cho JS, Kang DR (2016) Attributable risk of lung cancer deaths due to indoor radon exposure. Ann Occup Environ Med 28(1):1–7

    Article  Google Scholar 

  9. World Health Organization WHO (2009) Handbook on indoor radon: a public health perspective. WHO, Geneva

    Google Scholar 

  10. Ujić P, Celikovic I, Kandić A, Vukanac I, Urasevic M, Dragosavac D, Žunić ZS (2010) Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl Radiat Isot 68:201–206

    Article  PubMed  Google Scholar 

  11. Salaheldin G (2021) Assessment of radon radiological hazards in some ophiolite rocks, North Eastern Desert, Egypt. J Radioanal Nucl Chem 328:447–454

    Article  CAS  Google Scholar 

  12. Porstendorfer J (1994) Properties and behaviour of radon and thoron and their decay products in the air. J Aerosol Sci 25(2):219–263

    Article  Google Scholar 

  13. Stranden E, Kolstad AK (1984) The influence of moisture and temperature on radon exhalation. Radiat Prot Dosim 7:55–58

    Article  CAS  Google Scholar 

  14. Nazaroff WW, Nero AV (1988) Radon and its decay products in indoor air. Wiley, New York

    Google Scholar 

  15. Durrani SA, Ilic R (1997) Radon measurements by etched track detectors. World Scientific Publishing Co Pte Ltd

    Book  Google Scholar 

  16. Sharaf M, Mansy M, El-Sayed A, Abbas E (1999) Natural radioactivity and radon exhalation rates in building materials used in Egypt. Radiat Meas 31:491–495

    Article  CAS  Google Scholar 

  17. El-Bahi SM (2004) Assessment of radioactivity and radon exhalation rate in Egyptian cement. Health Phys 86(5):517–522

    Article  CAS  PubMed  Google Scholar 

  18. Maged A, Ashraf F (2005) Radon exhalation rate of some building materials used in Egypt. Environ Geochem Health 27:485–489

    Article  CAS  PubMed  Google Scholar 

  19. Hassan NM, Hosoda M, Ishikawa T, Tokonami S, Fukushi M, Hafez A, Khalil E (2009) a) 222Rn exhalation rate from Egyptian building materials using active and passive methods. Jpn Health Phy 44(1):106–111

    Article  CAS  Google Scholar 

  20. Moharram BM, Suliman MN, Zahran NF, Shennawy SE, El Sayed AR (2012) 238U, 232Th content and radon exhalation rate in some Egyptian building materials. Ann Nucl Energy 45:138–143

    Article  CAS  Google Scholar 

  21. Shoeib MY, Thabayneh KM (2014) Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J Radiat Res Appl Sci 7(2):174–181

    Article  CAS  Google Scholar 

  22. Yousef H, El-Farrash A, Ela A, Merza Q (2015) Measurement of radon exhalation rate in some building material using nuclear track detectors. World J Nucl Sci Technol 5:141–148

    Article  Google Scholar 

  23. Harb S, Ahmed NK, Elnobi S (2016) Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. J Nucl Particle Phys 6(4):80–87

    Google Scholar 

  24. Sandin K (1995) Mortars for masonry and rendering choice and application. Build Issues 7(3):1–18

    Google Scholar 

  25. Ignjatović I, Sas Z, Dragaš J, Somlai J, Kovács T (2017) Radiological and material characterization of high volume fly ash concrete. J Environ Radioact 168:38–45

    Article  PubMed  Google Scholar 

  26. Sas Z, Szántó J, Kovács J, Somlai J, Kovács T (2015) Influencing effect of heat-treatment on radon emanation and exhalation characteristic of red mud. J Environ Radioact 148:27–32

    Article  CAS  PubMed  Google Scholar 

  27. Kotrappa P, Stieff LR, Volkovitsky P (2005) Radon monitor calibration using NIST radon emanation standards: steady flow method. Radiat Prot Dosim 113(1):70–74

    Article  CAS  Google Scholar 

  28. Prasad G, Ishikawa T, Hosoda M, Sorimachi A, Sahoo SK, Kavasi N, Tokonami S, Sugino M, Uchida S (2012) Seasonal and diurnal variations of radon/thoron exhalation rate in Kanto-loam area in Japan. J Radioanal Nucl Chem 292:1385–1390

    Article  CAS  Google Scholar 

  29. Tuccimei P, Moroni M (2006) Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration. Appl Radiat Isot 64:254–263

    Article  CAS  PubMed  Google Scholar 

  30. Kovler K (2006) Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site. J Environ Radioact 86:354–366

    Article  CAS  PubMed  Google Scholar 

  31. Frutos-Puerto S, Pinilla-Gil E, Andrade E, Reis M, Madruga MJ, Miró Rodríguez C (2020) Radon and thoron exhalation rate, emanation factor and radioactivity risks of building materials of the Iberian Peninsula. PeerJ 8:10331

    Article  Google Scholar 

  32. Seo J, Nirwono MM, Park SJ, Lee SH (2018) Standard measurement procedure for soil radon exhalation rate and its uncertainty. J Radiat Prot Res 43(1):29–38

    Article  Google Scholar 

  33. Breitner D, Arvela H, Hellmuth KH, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions—a pilot study on granitic esker sand sample. J Environ Radioact 101:1002–1006

    Article  CAS  PubMed  Google Scholar 

  34. Shweikani R, Giaddui TG, Durrani SA (1995) The effect of soil parameters on the radon concentration values in the environment. Radiat Meas 25:581–584

    Article  CAS  Google Scholar 

  35. Sakoda A, Ishimori Y, Hanamoto K, Kataoka T, Kawabe A, Yamaoka K (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45:204–210

    Article  CAS  Google Scholar 

  36. Shirom Y, Hosoda M, Ishikawa T, Sahoo SK, Tokonami S, Furukawa M (2015) Estimation of radon emanation coefficient for representative soils in Okinawa Japan. Radiat Prot Dosim 167(1–3):147–150

    Article  Google Scholar 

  37. Chitra N, Danalakshmi B, Supriya D, Vijayalakshmi I, Sundar SB, Sivasubramanian K, Baskaran R, Jose MT (2018) Study of Radon and Thoron exhalation from soil samples of different grain sizes. Appl Radiat Isot 133:75–80

    Article  CAS  PubMed  Google Scholar 

  38. Chauhan RP, Nain M, Kant K (2008) Radon diffusion studies through some building materials: effect of grain size. Radiat Meas 43:S445–S448

    Article  CAS  Google Scholar 

  39. Hassan NM, Hosoda M, Ishikawa T, Sorimachi A, Sahoo SK, Tokonami S, Fukushi M (2009) Radon migration process and its influence factors; review. Jpn Health Phys 44(2):218–231

    Article  CAS  Google Scholar 

  40. Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M (2013) Measurement and calculation of radon releases from NORM residues. IAEA, International atomic energy agency. Vienna Technical Reports Series No. 474

  41. Markkanen M, Arvela H (1992) Radon emanation from soils. Radiat Prot Dosimetry 45(1–4):269–272

    Article  CAS  Google Scholar 

  42. Bossew P (2003) The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 59:389–392

    Article  CAS  PubMed  Google Scholar 

  43. Chau ND, Chruściel E, Prokólski L (2005) Factors controlling measurements of radon mass exhalation rate. J Environ Radioact 82:363–369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Salahel Din.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahel Din, K., Saad, N. Effect of moisture content on the 222Rn mass exhalation rates for different grain-size samples of red brick and cement mortar used in Qena city, Egypt. J Radioanal Nucl Chem 331, 833–839 (2022). https://doi.org/10.1007/s10967-021-08165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08165-1

Keywords

Navigation