Skip to main content
Log in

Measurement of the 171Tm half-life

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The half-life of 171Tm was measured by gamma-ray spectrometry, using the reference source method. The measured point-like source was prepared by homogenous mixing of 44Ti with 171Tm in order to obtain an identical detection geometry for both nuclides. The half-life of 171Tm was determined by following the count-rate ratio between the gamma-ray emissions at 66.73 keV (171Tm) and 67.9/78.3 keV (44Ti). The measurement campaign consisted of 280 measurements acquired over a period of 449 days, corresponding to about 60% of the half-life value. The result for the 171Tm half-life, 702.4 (70) d, is consistent with the currently recommended value, however the uncertainty assessment of the latter is poorly documented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guerrero C et al. (2020) Neutron capture on the s-process branching point 171Tm via time-of-flight and activation. Phys Rev Lett, 125(14):142701

  2. Käppeler F et al (2011) The s process: nuclear physics, stellar models, and observations. Rev Mod Phys 83(1):157–193

    Article  Google Scholar 

  3. Kajan I et al (2018) Emission probability of the 66.7 keV γ transition in the decay of 171Tm. Phys Rev C 98(5):055802

  4. Baglin CM, McCutchan EA (2018) Nuclear data sheets for A=171. Nucl Data Sheets 151:334–718

    Article  CAS  Google Scholar 

  5. Cohen IM, Hayes A, Melcer E (2016) Comparative evaluation of two methods for 172Tm production in nuclear reactors. J Radioanal Nucl Chem 308(3):947–953

    Article  CAS  Google Scholar 

  6. Flynn KF, Glendenin LE, Steinberg EP (1965) Half-life determinations by direct decay. Nucl Sci Eng 22(4):416–419

    Article  CAS  Google Scholar 

  7. Kettelle H (1949) ORNL-229. Oak Ridge National Laboratory.

  8. Pommé S et al (2008) Protocol for uncertainty assessment of half-lives. J Radioanal Nucl Chem 276(2):335–339

    Article  Google Scholar 

  9. Pommé S (2006) Problems with the uncertainty budget of half-life measurements, in applied modeling and computations in nuclear science. Am Chem Soc, pp 282–292

  10. Pommé S (2015) The uncertainty of the half-life. Metrologia 52(3):S51–S65

    Article  Google Scholar 

  11. Pommé S, De Hauwere T (2020) Derivation of an uncertainty propagation factor for half-life determinations. Appl Radiation Isotopes 158: 109046

  12. Pommé S, Pelczar K (2021) Empirical decomposition and error propagation of medium-term instabilities in half-life determinations. Metrologia, 58(3): 035012

  13. Parker JL (1990) Near-optimum procedure for half-life measurement by high-resolution gamma-ray spectroscopy. Nucl Instrum Methods Phys Res Sect A 286(3):502–506

    Article  Google Scholar 

  14. Kajan I, Pommé S, Pelczar K, Heinitz S, (2021) Measurement of the 145Sm half-life. Appl Radiation Isotopes 178: 109978

  15. Heinitz S et al (2017) Production, separation and target preparation of 171Tm and 147Pm for neutron cross section measurements. Radiochim Acta 105(10):801–811

    Article  CAS  Google Scholar 

  16. https://www.jimfitz.co.uk/fitzpeak.htm

  17. Ménesguen Y, Lépy M.-C. (2021) COLEGRAM, a flexible user-friendly software for processing of ionizing radiation spectra. Nucl Instrum Meth A 1003: 165341

  18. Pommé S, Fitzgerald R, Keightley J (2015) Uncertainty of nuclear counting. Metrologia 52(3):S3–S17

    Article  Google Scholar 

  19. Pommé S (2016) When the model doesn’t cover reality: examples from radionuclide metrology. Metrologia 53(2):S55-64

    Article  Google Scholar 

  20. Pommé S et al (2016) Evidence against solar influence on nuclear decay constants. Phys Lett B 761:281–286

    Article  Google Scholar 

  21. Pommé S et al (2016) On decay constants and orbital distance to the Sun—part I: alpha decay. Metrologia 54(1):1–18

    Article  Google Scholar 

  22. Pommé S et al (2016) On decay constants and orbital distance to the Sun—part II: beta minus decay. Metrologia 54(1):19–35

    Article  Google Scholar 

  23. Pommé S et al (2016) On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay. Metrologia 54(1):36–50

    Article  Google Scholar 

  24. Pommé S et al (2018) Is decay constant? Appl Radiat Isot 134:6–12

    Article  Google Scholar 

  25. Pommé S (2019) Solar influence on radon decay rates: irradiance or neutrinos? Eur Phys J C 79(1):73

    Article  Google Scholar 

  26. Pommé S et al (2021) On the interpretation of annual oscillations in 32Si and 36Cl decay rate measurements. Sci Rep 11(1):16002

    Article  Google Scholar 

  27. Pommé S, Pelczar K (2020) On the recent claim of correlation between radioactive decay rates and space weather. Eur Phys J C 80(11):1093

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

IK: Conceptualization, Resources, Methodology, Software, Validation, Formal analysis, Investigation, Visualization, Writing—original draft, Writing—Review and Editing. SP: Methodology, Software, Formal analysis, Investigation, Visualization, Writing—original draft, Writing—Review and Editing. SH: Resources, Investigation, Writing—original draft, Writing—Review and Editing.

Corresponding author

Correspondence to I. Kajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajan, I., S. Pommé & Heinitz, S. Measurement of the 171Tm half-life. J Radioanal Nucl Chem 331, 645–653 (2022). https://doi.org/10.1007/s10967-021-08108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08108-w

Keywords

Navigation