Skip to main content
Log in

Construction of Deino-flr-2 radiation-tolerant genetically engineered strain containing flr-2 fluoride-tolerant gene and its enrichment behavior for U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to solve the problem of lack of resistance of active microorganisms to the complex ion environment in the treatment of uranium-containing wastewater, the Deino-flr-2 radiation-resistant genetically engineered bacteria containing flr-2 fluorine-resistant gene was constructed and characterized. Utilizing the reductase activity of Deinococcus radiodurans (DR) itself and the enrichment of U(VI) by the surface active functional groups of the bacteria, the treatment of simulated low-concentration uranium-containing wastewater will be realized. In the most favorable conditions, accounting for approximately 90% of U(VI) was removed. The calculated data disclosed that the enrichment process of U(VI) by Deino-flr-2 well fit with the pseudo-second-order kinetic and Freundlich isotherm model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xiao FZ, Peng GW, Ding DX, Dai YM (2015) Preparation of a novel biosorbent ISCB and its adsorption and desorption properties of uranium ions in aqueous solution. J Radioanal Nucl Chem 306(2):349–356

    Article  CAS  Google Scholar 

  2. Xu C, Li TY, Hu CJ, Guo HQ, Ye J, Li L, Liu WP, Niu LL (2021) Waterborne uranium causes toxic effect and thyroid disruption in zebrafish larvae. Ecotoxicol Environ Saf 208:111585

    Article  CAS  Google Scholar 

  3. Zhang Y, Lai JL, Ji XH, Luo XG (2020) Unraveling response mechanism of photosynthetic metabolism and respiratory metabolism to uranium-exposure in Vicia faba. J Hazard Mater 398:122997

    Article  CAS  Google Scholar 

  4. Rai D, Yui M, Moore DA (2003) Solubility and solubility product at at 22Cof UO2(c) precipitated from aqueous solutions. J Solut Chem 32:1e17

    Article  Google Scholar 

  5. Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234

    Article  CAS  Google Scholar 

  6. Lakaniemi AM, Douglas GB, Kaksonen AH (2019) Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments. J Hazard Mater 371:198–212

    Article  CAS  Google Scholar 

  7. Ansoborlo E, Lebaron-Jacobs L, Prat O (2015) Uranium in drinking-water: A unique case of guideline value increases and discrepancies between chemical and radiochemical guidelines. Environ Int 77:1–4

    Article  CAS  Google Scholar 

  8. Guo XJ, Chen RR, Liu Q, Liu JY, Zhang HS, Yu J, Li RM, Zhang ML, Wang J (2018) Superhydrophilic phosphate and amide functionalized magnetic adsorbent: a new combination of anti-biofouling and uranium extraction from seawater. Environ Sci Nano 5(10):2346–2356

    Article  CAS  Google Scholar 

  9. Su MH, Liu ZQ, Wu YH, Peng HR, Ou T, Huang S, Song G, Kong LJ, Chen N, Chen DY (2021) Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Environ Pollut 268:115786

    Article  CAS  Google Scholar 

  10. Chen T, Liu B, Li MX, Zhou L, Lin DJ, Ding XB, Lian J, Li JW, He R, Duan T, Zhu WK (2021) Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chem Eng J 406:126791

    Article  CAS  Google Scholar 

  11. Zhang W, Dong FQ, Liu MX, Song HQ, Nie XQ, Huo TT, Zhao YL, Wang PP, Qin YL, Zhou L (2020) Reduction and enrichment of uranium after biosorption on inactivated Saccharomyces cerevisiae. Pol J Environ Stud 29(2):1461–1472

    Article  CAS  Google Scholar 

  12. Pinel-Cabello M, Jroundi F, Lopez-Fernandez M, Geffers R, Jarek M, Jauregui R, Link A, Vilchez-Vargas R, Merroun ML (2021) Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic study. J Hazard Mater 403:123858

    Article  CAS  Google Scholar 

  13. Zinicovscaia I, Safonov A, Zelenina D, Ershova Y, Boldyrev K (2020) Evaluation of biosorption and bioaccumulation capacity of cyanobacteria Arthrospira (spirulina) platensis for radionuclides. Algal Res Biomass Biofuels Bioprod 51:102075

    Google Scholar 

  14. Zhou L, Dong FQ, Zhang W, Tang ZH, Xiong X, Zhou L, Li DK, Huo TT, Chen XM, Liu JF, Feng CX, Li RF (2020) Removal behavior and mechanism of uranium by bacillus siamensis based on spectroscopic analysis: the role of biological phosphorus. Spectrosc Spect Anal 40(1):22–28

    Google Scholar 

  15. Mtimunye PJ, Chirwa EMN (2019) Uranium (VI) reduction in a fixed-film reactor by a bacterial consortium isolated from uranium mining tailing heaps. Biochem Eng J 145:62–73

    Article  CAS  Google Scholar 

  16. Zeng TT, Mo GH, Hu Q, Wang GH, Liao W, Xie SB (2020) Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure. Environ Pollut 261:114176

    Article  CAS  Google Scholar 

  17. Song JN, Han B, Song H, Yang JR, Zhang LJ, Ning P, Lin Z (2019) Nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633 under aerobic conditions. J Environ Radioact 208:106027

    Article  Google Scholar 

  18. Sánchez-Castro I, Martínez-Rodríguez P, Jroundi F, Solari PL, Descostes M, Merroun ML (2020) High-efficient microbial immobilization of solved U(VI) by the Stenotrophomonas strain Br 8 %. J Water Res 183:116110

    Article  Google Scholar 

  19. West JM, Mckinley IG, Stroes-Gascoyne S (2002) Microbial effects on waste repository materials. In: Keith-Roach M, Livens F (eds) Interactions of microorganisms with radionuclides. Elsevier Sciences, Oxford, UK, pp 255–277

    Chapter  Google Scholar 

  20. Li X, Wen JK, Mo XL, Wu B, Shang H, Wu ML, Wang DZ, Yang HY (2018) Leaching microbial fluorine inhibition mechanism and iron competitive complexation. J Eng Sci 40(10):1223–1230

    Google Scholar 

  21. Li X, Wen JK, Mo XL, Biao W, Wang DZ, Yang HY (2019) Mechanism of aluminum complexation in oxidative activity of leaching bacteria in a fluoride-containing bioleaching system. Rare Met 38(1):87–94

    Article  CAS  Google Scholar 

  22. Sorokin ND, Afanasova EN (2011) Microbial indication of soils contaminated with industrial emissions. J Contemp Prob Ecol 4(5):508–512

    Article  Google Scholar 

  23. Marquis RE, Clock SA, Mota-Meira M (2003) Fluoride and organic weak acids as modulators of microbial physiology. J FEMS Microbiol Rev 26(5):493–510

    Article  CAS  Google Scholar 

  24. Daly MJ (2006) Modulating Radiation Resistance: Insights Based on Defenses Against Reactive Oxygen Species in the Radioresistant Bacterium Deinococcus radiodurans. J Clin Lab Med 26(2):491–504

    Article  Google Scholar 

  25. Jin MM, Xiao AQ, Zhu LY, Zhang ZD, Huang H, Jiang L (2019) The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 9(1):138

    Article  Google Scholar 

  26. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. J Appl Environ Microbiol 66(5):2006

    Article  CAS  Google Scholar 

  27. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861

    Article  CAS  Google Scholar 

  28. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. J Nat Biotechnol Sci Bus Biotechnol 18(1):85–90

    Article  CAS  Google Scholar 

  29. Manobala T, Shukla SK, Rao TS, Kumar MD (2019) A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 44(5):122

    Article  Google Scholar 

  30. Xu R, Wu KJ, Han HW, Ling ZM, Chen ZJ, Liu P, Xiong J, Tian FK, Zafar Y, Malik K, Li XK (2018) Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium. Chemosphere 211:1156–1165

    Article  CAS  Google Scholar 

  31. Wenjun P (2011) Construction of fluoride-resistant genetically engineered ore-leaching microorganism Thiobacillus ferrooxidans. Nanhua University, Master

    Google Scholar 

  32. Chansley PE, Kral TA (1989) Transformation of fluoride resistance genes in Streptococcus mutans. Infect Immun 57(7):1968–1970

    Article  CAS  Google Scholar 

  33. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169

    Article  CAS  Google Scholar 

  34. Shen L, Han X, Qian J, Hua D (2017) Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficient sorption of a uranyl tricarbonate complex from aqueous solutions. RSC Adv 7(18):10791–10797

    Article  CAS  Google Scholar 

  35. Yuan YJ, Liu NN, Dai Y, Wang BL, Liu YZ, Chen CH, Huang DJ (2020) Effective biosorption of uranium from aqueous solution by cyanobacterium Anabaena flos-aquae. Environ Sci Pollut Res 27(35):44306–44313

    Article  Google Scholar 

  36. Mishima K, Deng YL, Feng SH, Abe M, Miyamoto N, Kano N (2019) Combined experimental and quantum chemistry studies on the pH dependence of the adsorption efficiency of Uranium (Vl): Lewis theory of acid-base reactions in adsorption processes. J Phys Chem C 123(2):1032–1040

    Article  CAS  Google Scholar 

  37. Wang C, Xiao FZ, Pu YQ, Xu YL, Xu DY, Zhang K, Liu Y, Peng GW (2018) Preparation of p-carboxyphenyl azo calix 4 arene phosphate derivative and its extraction properties toward uranium(VI). J Radioanal Nucl Chem 317(3):1235–1241

    Article  CAS  Google Scholar 

  38. Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104

    Article  CAS  Google Scholar 

  39. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. J Process Biochemistry 34(5):451–465

    Article  CAS  Google Scholar 

  40. Liu Y, Liu Y (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61(3):229–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (CN) (Grants 11705085) and the Hunan Province Natural Science Foundation of China (Grants 2020JJ6050 and 2020JJ4077) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangzhu Xiao or Guowen Peng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Zhu, Q., Li, S. et al. Construction of Deino-flr-2 radiation-tolerant genetically engineered strain containing flr-2 fluoride-tolerant gene and its enrichment behavior for U(VI). J Radioanal Nucl Chem 328, 1265–1278 (2021). https://doi.org/10.1007/s10967-021-07697-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07697-w

Keywords

Navigation