Skip to main content
Log in

Gamma spectrometric measurement of natural radionuclides and associated radiation hazards in soil of small-scale paddy farms along Enugu-Abakaliki express way, Southeastern Nigeria

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Measurements of the activity concentrations of 232Th, 238U and 40K in soil of small-scale paddy farms along the Enugu-Abakaliki highway were carried out using NaI(TI) detector. The results show activity concentrations in the range of 3.59 ± 0.22 to 12.32 ± 0.72 Bq kg−1 for 232Th, 2.06 ± 0.21 to 32.53 ± 3.59 Bq kg−1 for 238U and 26.46 ± 1.44 to 370.09 ± 20.05 Bq kg−1 for 40K with the order; 40K > 238U > 232Th. The results, though indicate an enhancement when compared with a control soil, the average levels are still below the world wide average reported by UNSCEAR, thus do not present any radiological threat to the general public at this current levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (2000) United Nations Scientific Committee on the effect of Atomic Radiation: Exposures from natural radiation sources. Report to General Assembly, with Scientific Annexes. United Nations, New York

  2. Ribeiro FC, Lauria DC, Rio MA, da Cunha FG, Sousa WO, Franzen LEM, M, (2017) Mapping soil radioactivity in the Fernando de Noronha archipelago, Brazil. J Radioanal Nucl Chem 311:577–587. https://doi.org/10.1007/s10967-016-5059-z

    Article  CAS  Google Scholar 

  3. Inigo-Valan I, Vijayalakshmi I, Mathiyarasu R, Sridhar SGD, Narayanan V, Stephen A (2018) Investigation of natural background radiation of sediments in Rameswaram Island, Tamil Nadu, India. Arab J Geosci 11:762. https://doi.org/10.1007/s12517-018-4125-y

    Article  CAS  Google Scholar 

  4. Gholami M, Mirzaei S, Jomehzadeh A (2011) Gamma background radiation measurement in Lorestan province, Iran. Int J Radiat Res 9(2):89–93

    Google Scholar 

  5. Alrefae T, Nageswaran TN (2013) Radioactivity of long lived gamma emitters in rice consumed in Kuwait. J Ass Arab Uni Basic Appl Sci 13(1):24–27

    Google Scholar 

  6. Asaduzzaman K, Khandaker M, Amin Y, Mahat R (2015) Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular Malaysia for the estimation of ingestion dose to man. Ann Nucl Energy 76:85–93

    Article  CAS  Google Scholar 

  7. Karunakara N, Rao C, Ujwal P, Yashodhara I, Kumara S, Ravi P (2013) Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J Environ Radioact 118:80–92

    Article  CAS  Google Scholar 

  8. Senthilkumar R, Narayanaswamy R (2016) Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J Radiat Res Appl Sci 9:449–456

    Article  Google Scholar 

  9. Akhter P, Rahman K, Orfi SD, Ahmad N (2007) Radiological impact of dietary intakes of naturally occurring radionuclides on Pakistani adults. Food Chem Toxicol 45:272–277

    Article  CAS  Google Scholar 

  10. Harold LB (1989) Radiation exposures due to fossil fuel combustion. Radiat Phys Chem 34(2):285–293

    Google Scholar 

  11. Benson ID, Ugbede FO (2018) Measurement of background ionizing radiation and evaluation of lifetime cancer risk in highly populated motor parks in Enugu City, Nigeria. IOSR J Appl Phys 10(3):77–82

    Google Scholar 

  12. Osakwe SA, Okolie LP (2015) Physicochemical characteristics and heavy metals contents in soils and cassava plants from farmlands along a major highway in Delta State, Nigeria. J Appl Sci Environ Manag 19(4):695–704

    CAS  Google Scholar 

  13. Alsaffar MS, Jaafar MS, Kabir NA, Ahmad N (2015) Distribution of 226Ra, 232Th, and 40K in rice plant components and physico-chemical effects of soil on their transportation to grains. J Radiat Res Appl Sci 8:300–310

    Article  Google Scholar 

  14. Gad A, Saleh A, Khalifa M (2019) Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arab J Geosci 12:188

    Article  Google Scholar 

  15. IAEA (1989) International Atomic Energy Agency, Measurement of radiation in Food and the Environment. A Guidebook. Technical Report Series (1989) No. 295

  16. Nwankwo CU, Ogundare FO, Folley DE (2015) Radioactivity concentration variation with depth and assessment of workers’ doses in selected mining sites. J Radiat Res Appl Sci 8:216–220

    Article  CAS  Google Scholar 

  17. Giwa KW, Osahon OD, Amodu FR, Tahiru TI, Ogunsanwo FO (2018) Radiometric analysis and spatial distribution of radionuclides with-in the terrestrial environment of South-Western Nigeria using ERICA tool. Environ Nanotechnol Monit Manag 10:419–426

    Google Scholar 

  18. Jibiri NN, Okeyode IC (2012) Evaluation of radiological hazards in the sediments of Ogun river, South-Western Nigeria. Radiat Phys Chem 81(2):103–112

    Article  CAS  Google Scholar 

  19. Beretka J, Mathew PJ (1985) Natural radioactivity of Australia building materials industrial wastes and byproducts. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  20. Qureshi AA, Tariq S, Ud Din K, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7(4):438–447

    Article  Google Scholar 

  21. Suresh GM, Ravisankar R, Rajalakshmi A, Sivakumar S, Chandrasekaran A, Anand DP (2014) Measurements of natural gamma radiation in beach sediments of north east coast of Tamilnadu, India by gamma ray spectrometry with multivariate statistical approach. J Radiat Res Appl Sci 7(1):7–17

    Article  Google Scholar 

  22. Sivakumar S, Chandrasekaran A, Ravisankar R, Ravikumar SM, Jebakumar JPP, Vijayagopal P, Vijayalakshmi I, Jose MT (2014) Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach. J Taibah Univ Sci 8:375–384

    Article  Google Scholar 

  23. Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J Radiat Res Appl Sci 8:17–25

    Article  CAS  Google Scholar 

  24. ICRP (1990) The 1990 Recommendations of the International Commission on Radiological Protection. Oxford, UK: ICRP Publication 60. Annals of the ICRP. Pergamon Press

  25. Ugbede FO, Benson ID (2018) Assessment of outdoor radiation levels and radiological health hazards in Emene Industrial Layout of Enugu State, Nigeria. Int J Phys Sci 13(20):265–272

    Article  CAS  Google Scholar 

  26. Jibiri NN, Alausa SK, Farai IP (2009) Assessment of external and internal doses due to farming in high background radiation areas in old tin mining localities in Jos-plateau, Nigeria. Radioprotection 44(2):139–151

    Article  CAS  Google Scholar 

  27. Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8:459–469

    Article  Google Scholar 

  28. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection: Annals of the ICRP Publication 103 (pp 2–4). Elsevier

  29. Ugbede FO (2020) Distribution of 40K, 238U and 232Th and associated radiological risks in River sand sediments across Enugu East, Nigeria. Environ Nanotechnol Monit Manag 20:100317. https://doi.org/10.1016/j.enmm.2020.100317

    Article  Google Scholar 

  30. Belivermis M, Kılıç Ö, Çotuk Y, Topcuoğlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163(1–4):15–26. https://doi.org/10.1007/s10661-009-0812-1

    Article  CAS  PubMed  Google Scholar 

  31. Guidotti L, Carini F, Rossi R, Gatti M, Cenci RM, Beone GM (2015) Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, Northern Italy. J Environ Radioact 142:36–44

    Article  CAS  Google Scholar 

  32. Adedokun MB, Aweda MA, Maleka PP, Obed RI, Ogungbemi KI, Ibitoye ZA (2019) Natural radioactivity contents in commonly consumed leafy vegetables cultivated through surface water irrigation in Lagos state, Nigeria. J Radiat Res Appl Sci 12(1):147–156. https://doi.org/10.1080/16878507.2019.1618084

    Article  Google Scholar 

  33. Kant B, Upadhyay SB, Sonkawade RG, Chakarvarti SK (2006) Radiological risk assessment of use of phosphate fertilizers in soil. Iranian J Radiat Res 4(2):63–70

    Google Scholar 

  34. Saleh IH, Hafez AF, Naim MA (2007) Radiological study on soils, foodstuff and fertilizers in the Alexandria Region, Egypt. Turk J Engine Environ Sci 31:9–17

    CAS  Google Scholar 

  35. Isinkaye MO (2012) Distribution of heavy metals and natural radionuclides in selected mechanized agricultural farmlands within Ekiti State, Nigeria. Arab J Sci Engine 37:1483–1490. https://doi.org/10.1007/s13369-012-0245-y

    Article  CAS  Google Scholar 

  36. Avwiri GO, Agbalagba EO (2013) Assessment of natural radioactivity, associated radiological health hazards indices and soil-to-crop transfer factors in cultivated area around a fertilizer factory in Onne, Nigeria. Environ Earth Sci 71(4):1541–1549

    Google Scholar 

  37. Darko G, Faanu A, Akoto O, Acheampong A, Goode EJ, Gyamfi O (2015) Distribution of natural and artificial radioactivity in soils, water and tuber crops. Environ Monit Assess 187:339. https://doi.org/10.1007/s10661-015-4580-9

    Article  CAS  PubMed  Google Scholar 

  38. Bramki A, Ramdhane M, Benrachi A (2018) Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. J Radiat Res Appl Sci 11(1):49–55. https://doi.org/10.1016/j.jrras.2017.08.002

    Article  CAS  Google Scholar 

  39. Birami FA, Moore F, Faghihi R, Keshavarzi B (2019) Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high-level natural radiation area, Northern Iran. J Radioanal Nucl Chem 322(3):2091–2103

    Article  Google Scholar 

  40. Usikalu MR, Fuwape IA, Jatto SS, Awe OF, Rabiu AB, Achuka JA (2017) Assessment of radiological parameters of soil in Kogi State, Nigeria. Environ Forensics 18(1):1–14. https://doi.org/10.1080/15275922.2016.1263898

    Article  CAS  Google Scholar 

  41. Yadav P, Garg VK, Singh B, Pulhani V, Mor S (2018) Transfer factors and effective dose evaluation due to natural radioactivity in staple food grains from the vicinity of proposed nuclear power plant. Expos Health 10(1):27–39. https://doi.org/10.1007/s12403-017-0243-0

    Article  CAS  Google Scholar 

  42. Stevanovic V, Gulan L, Milenkovic B, Valjarevic A, Zeremski T, Penjisevic I (2018) Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region, South Serbia. Environ Geochem Health 40:2101–2118

    Article  CAS  Google Scholar 

  43. Dizman S, Görür FK, Keser R, Görür O (2019) The assessment of radioactivity and radiological hazards in soils of Bolu province. Turkey Environ Forensics 20(3):211–218. https://doi.org/10.1080/15275922.2019.1629129

    Article  CAS  Google Scholar 

  44. Abbasi A, Kurnaz A, Turhan S, Mirekhtiary F (2020) Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J Radioanal Nucl Chem 324(1):203–210. https://doi.org/10.1007/s10967-020-07069-w

    Article  CAS  Google Scholar 

  45. Anamika K, Mehra R, Malik P (2020) Assessment of radiological impacts of natural radionuclides and radon exhalation rate measured in the soil samples of Himalayan foothills of Uttarakhand, India. J Radioanal Nucl Chem 323:263–274. https://doi.org/10.1007/s10967-019-06876-0

    Article  CAS  Google Scholar 

  46. Hamideen MS, Chandrasekaran A, Elimat ZM (2019) Statistical assessment of radiological data of tiles collected from Jordan. Int J Environ Anal Chem 99(13):1325–1339. https://doi.org/10.1080/03067319.2019.1620739

    Article  CAS  Google Scholar 

  47. Karim Z, Qureshi BAL, Mumtaz M (2015) Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol Indic 48:358–364

    Article  CAS  Google Scholar 

  48. Gbadamosi MR, Afolabi TA, Ogunneye AL, Ogunbanjo OO, Omotola EO, Kadiri TM, Akinsipo OB, Jegede DO (2018) Distribution of radionuclides and heavy metals in the bituminous sand deposit in Ogun State, Nigeria—a multi-dimensional pollution, health and radiological risk assessment. J Geochem Expl 190:187–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrick Oghenebrorie Ugbede.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugbede, F.O., Osahon, O.D. Gamma spectrometric measurement of natural radionuclides and associated radiation hazards in soil of small-scale paddy farms along Enugu-Abakaliki express way, Southeastern Nigeria. J Radioanal Nucl Chem 328, 551–562 (2021). https://doi.org/10.1007/s10967-021-07671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07671-6

Keywords

Navigation