Skip to main content
Log in

New loading method for high precision Sm isotope analysis of nuclear materials using thermal ionization mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work demonstrates an analytical protocol for high precision Sm isotope analysis by thermal ionization mass spectrometry (TIMS) using a Pt activator. The method permits precise measurements of small aliquots (1–20 ng) of Sm on single Re filament using a modified static-total evaporation technique. This study represents the first attempt to use such protocols for Sm isotope analyses while reducing the loading size of Sm for TIMS. The method could potentially be deployed to study geological, meteorites and lunar samples containing low Sm concentrations, to monitor neutron irradiation exposure based on 149,150Sm, or to measure Sm isotopic composition in other types of nuclear samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baum EM, Ernesti MC, Knox HD et al (2009) Nuclides and isotopes: chart of the nuclides, 17th edn. Knolls Atomic Power Laboratory, New York

    Google Scholar 

  2. Sharp N, Ticknor BW, Bronikowski M et al (2017) Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors. J Radioanal Nucl Chem 311:801–808. https://doi.org/10.1007/s10967-016-5099-4

    Article  CAS  Google Scholar 

  3. Sharp N, McDonough WF, Ticknor BW et al (2014) Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses. J Radioanal Nucl Chem 302:57–67. https://doi.org/10.1007/s10967-014-3285-9

    Article  CAS  Google Scholar 

  4. Hidaka H, Masuda A (1988) Nuclide analyses of rare earth elements of the Oklo uranium ore samples: a new method to estimate the neutron fluence. Earth Planet Sci Lett 88:330–336. https://doi.org/10.1016/0012-821X(88)90089-1

    Article  CAS  Google Scholar 

  5. Hamilton PJ, O’Nions NM, Evensen NM, Bridgwater D (1978) Sm-Nd isotopic investigations of Isua supracrustals and implications for mantle evolution. Nature 272:41–43. https://doi.org/10.1038/272041a0

    Article  CAS  Google Scholar 

  6. Guo Z, Li J, Xu X et al (2016) Sm–Nd dating and REE Composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China. Lithos 261:307–321. https://doi.org/10.1016/j.lithos.2016.03.006

    Article  CAS  Google Scholar 

  7. Lugmair GW, Scheinin NB, Marti K (1975) Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth Planet Sci Lett 27:79–84. https://doi.org/10.1016/0012-821X(75)90163-6

    Article  CAS  Google Scholar 

  8. Lugmair GW, Marti K (1977) Sm-Nd-Pu timepieces in the Angra dos Reis meteorite. Earth Planet Sci Lett 35:273–284. https://doi.org/10.1016/0012-821X(77)90131-5

    Article  CAS  Google Scholar 

  9. Lugmair G, Kurtz JP, Marti K, Scheinin N (1976) The low-Sm/Nd region of the moon: evolution and history of a troctolite and a KREEP basalt. In: 7th lunar and planetary science conference. Pergamon Press, New York, pp 509–510

  10. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357. https://doi.org/10.1016/0012-821X(78)90021-3

    Article  CAS  Google Scholar 

  11. Brandon AD, Lapen TJ, Debaille V et al (2009) Re-evaluating 142Nd/144Nd in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim Cosmochim Acta 73:6421–6445. https://doi.org/10.1016/j.gca.2009.07.015

    Article  CAS  Google Scholar 

  12. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155. https://doi.org/10.1016/0012-821X(80)90125-9

    Article  CAS  Google Scholar 

  13. Hidaka H, Holliger P (1998) Geochemical and neutronic characteristics of the natural fossil fission reactors at Oklo and Bangombé, Gabon. Geochim Cosmochim Acta 62:89–108. https://doi.org/10.1016/S0016-7037(97)00319-0

    Article  CAS  Google Scholar 

  14. Damour T, Dyson F (1996) The Oklo bound on the time variation of the fine-structure constant revisited. Nucl Phys B 480:37–54. https://doi.org/10.1016/S0550-3213(96)00467-1

    Article  Google Scholar 

  15. Ruffenach JC, Menes J, Devillers C et al (1976) Etudes chimiques et isotopiques de l’uranium, du plomb et de plusieurs produits de fission dans un echantillon de minerai du reacteur naturel d’Oklo. Earth Planet Sci Lett 30:94–108. https://doi.org/10.1016/0012-821X(76)90011-X

    Article  CAS  Google Scholar 

  16. De Laeter JR, Böhlke JK, De Bièvre P et al (2003) Atomic weights of the elements: review 2000 (IUPAC Technical Report). Pure Appl Chem 75:683–800. https://doi.org/10.1351/pac200375060683

    Article  Google Scholar 

  17. Moreira O (2015) Analysis of 149Sm time evolution and the reactivity contribution in nuclear reactors. Ann Nucl Energy 83:87–93. https://doi.org/10.1016/j.anucene.2015.04.009

    Article  CAS  Google Scholar 

  18. Kirchenbaur M, Maas R, Ehrig K et al (2016) Uranium and Sm isotope studies of the supergiant Olympic Dam Cu–Au–U–Ag deposit, South Australia. Geochim Cosmochim Acta 180:15–32. https://doi.org/10.1016/j.gca.2016.01.035

    Article  CAS  Google Scholar 

  19. Hidaka H, Gauthier-Lafaye F (2001) Neutron capture effects on Sm and Gd isotopes in uraninites. Geochim Cosmochim Acta 65:941–949. https://doi.org/10.1016/S0016-7037(00)00567-6

    Article  CAS  Google Scholar 

  20. Shollenberger QR, Borg LE, Ramon EC et al (2021) Samarium isotope compositions of uranium ore concentrates: a novel nuclear forensic signature. Talanta 221:121431. https://doi.org/10.1016/j.talanta.2020.121431

    Article  CAS  PubMed  Google Scholar 

  21. Faure G, Mensing TM (2004) Isotopes: principles and applications, 3rd edn. Wiley, Hoboken

    Google Scholar 

  22. Chugaev AV, Budyak AE, Chernyshev IV et al (2017) Sources of clastic material of the Neoproterozoic metasedimentary rocks of the Baikal-Patom belt, Northern Transbaikalia: evidence from Sm–Nd isotope data. Geochem Int 55:60–68. https://doi.org/10.1134/S0016702916120028

    Article  CAS  Google Scholar 

  23. Kagami S, Yokoyama T (2016) Chemical separation of Nd from geological samples for chronological studies using 146Sm–142Nd and 147Sm–143Nd systematics. Anal Chim Acta 937:151–159. https://doi.org/10.1016/j.aca.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  24. Bast R, Scherer EE, Sprung P et al (2017) Reconciliation of the excess 176Hf conundrum in meteorites: recent disturbances of the Lu–Hf and Sm–Nd isotope systematics. Geochim Cosmochim Acta 212:303–323. https://doi.org/10.1016/j.gca.2017.05.043

    Article  CAS  Google Scholar 

  25. Lugmair GW (1974) Sm–Nd ages: a new dating method. Meteoritics 9:369

    Google Scholar 

  26. Hamilton PJ, Evensen NM, O’Nions RK et al (1979) Sm–Nd dating of Onverwacht Group Volcanics, southern Africa. Nature 279:298–300. https://doi.org/10.1038/279298a0

    Article  Google Scholar 

  27. Humphries FJ, Cliff RA (1982) Sm–Nd dating and cooling history of Scourian granulites, Sutherland. Nature 295:515–517. https://doi.org/10.1038/295515a0

    Article  CAS  Google Scholar 

  28. Chesley JT, Halliday AN, Scrivener RC (1991) Samarium-neodymium direct dating of fluorite mineralization. Science (80-) 252:949–951. https://doi.org/10.1126/science.252.5008.949

    Article  CAS  Google Scholar 

  29. Bros R, Stille P, Gauthier-Lafaye F et al (1992) Sm–Nd isotopic dating of Proterozoic clay material: an example from the Francevillian sedimentary series, Gabon. Earth Planet Sci Lett 113:207–218. https://doi.org/10.1016/0012-821X(92)90220-P

    Article  CAS  Google Scholar 

  30. Boyet M, Carlson RW, Horan M (2010) Old Sm–Nd ages for cumulate eucrites and redetermination of the solar system initial 146Sm/144Sm ratio. Earth Planet Sci Lett 291:172–181. https://doi.org/10.1016/j.epsl.2010.01.010

    Article  CAS  Google Scholar 

  31. Dubois JC, Retali G, Cesario J (1992) Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 120:163–177. https://doi.org/10.1016/0168-1176(92)85046-3

    Article  CAS  Google Scholar 

  32. Hidaka H, Ebihara M, Shima M (1995) Determination of the isotopic compositions of samarium and gadolinium by thermal ionization mass spectrometry. Anal Chem 67:1437–1441. https://doi.org/10.1021/ac00104a021

    Article  CAS  Google Scholar 

  33. Miranda MG, Russell B, Ivanov P (2018) Measurement of 151Sm in nuclear decommissioning samples by ICP-MS/MS. J Radioanal Nucl Chem 316:831–838. https://doi.org/10.1007/s10967-018-5764-x

    Article  CAS  Google Scholar 

  34. Dresser MJ (1968) The Saha-Langmuir equation and its application. J Appl Phys 39:338–339. https://doi.org/10.1063/1.1655755

    Article  CAS  Google Scholar 

  35. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733. https://doi.org/10.1063/1.323539

    Article  CAS  Google Scholar 

  36. Eastman DE (1970) Photoelectric work functions of transition, rare-earth, and noble metals. Phys Rev B 2:1–2. https://doi.org/10.1103/PhysRevB.2.1

    Article  Google Scholar 

  37. Hölzl J, Schulte FK (1979) Work function of metals. In: Höhler G (ed) Solid surface physics springer tracts in modern physics. Springer, Berlin, pp 1–150

    Google Scholar 

  38. Rivihre JC (1969) Work function: measurements and results. In: Green M (ed) Solid state surface science, vol 1. Marcel Dekker, New York

    Google Scholar 

  39. Watrous MG, Delmore JE, Stone ML (2010) Porous ion emitters—a new type of thermal ion emitter. Int J Mass Spectrom 296:21–24. https://doi.org/10.1016/j.ijms.2010.07.015

    Article  CAS  Google Scholar 

  40. Shao X, Bu W, Fan Y et al (2020) High-precision cerium isotope analysis by thermal ionization mass spectrometry using the Ce+ technique. J Anal At Spectrom 35:467–477. https://doi.org/10.1039/c9ja00420c

    Article  CAS  Google Scholar 

  41. Shao X, Bu W, Long K et al (2019) Precise measurements of trace neodymium isotopes as Nd+ ions by thermal ionization mass spectrometry using film porous ion emitters. Spectrochim Acta Part B 159:105656. https://doi.org/10.1016/j.sab.2019.105656

    Article  CAS  Google Scholar 

  42. Baruzzini ML, Hall HL, Watrous MG et al (2017) Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters. Int J Mass Spectrom 412:8–13. https://doi.org/10.1016/j.ijms.2016.11.013

    Article  CAS  Google Scholar 

  43. Stanley FE, Spencer KJ, Schwartz DS et al (2014) Investigating enhanced thorium ionization in TIMS using Re/Pt porous ion emitters. J Radioanal Nucl Chem 299:1447–1452. https://doi.org/10.1007/s10967-013-2813-3

    Article  CAS  Google Scholar 

  44. Kauffman GB, Thurner JJ, Zatko DA (1967) Ammonium hexachloroplatinate(IV). In: Bilar JC Jr (ed) Inorganic syntheses. McGraw-Hill, Inc., New York, pp 182–185

    Google Scholar 

  45. Lide DR (2005) Platinum. CRC handbook of chemistry and physics. CRC Press, Boca Raton, pp 22–26

    Google Scholar 

  46. Suzuki D, Saito-Kokubu Y, Sakurai S et al (2010) A new method for isotope ratio measurement of uranium in trace amount by thermal ionization mass spectrometry: the continuous heating method. Int J Mass Spectrom 294:23–27. https://doi.org/10.1016/j.ijms.2010.04.007

    Article  CAS  Google Scholar 

  47. Richter S, Kühn H, Aregbe Y et al (2011) Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry. J Anal At Spectrom 26:550–564. https://doi.org/10.1039/C0JA00173B

    Article  CAS  Google Scholar 

  48. Inglis JD, Maassen J, Kara A et al (2017) A multiple ion counter total evaporation (MICTE) method for precise analysis of plutonium by thermal ionization mass spectrometry. J Radioanal Nucl Chem 312:663–673. https://doi.org/10.1007/s10967-017-5259-1

    Article  CAS  Google Scholar 

  49. Maassen J, Inglis JD, Wende A et al (2019) Analysis of sub-picogram quantities of 238Pu by thermal ionization mass spectrometry. J Radioanal Nucl Chem 321:1073–1080. https://doi.org/10.1007/s10967-019-06672-w

    Article  CAS  Google Scholar 

  50. Fukami Y, Tobita M, Yokoyama T et al (2017) Precise isotope analysis of sub-nanogram lead by total evaporation thermal ionization mass spectrometry (TE-TIMS) coupled with a 204Pb–207Pb double spike method. J Anal At Spectrom 32:848–857. https://doi.org/10.1039/C6JA00455E

    Article  CAS  Google Scholar 

  51. Yokoyama T, Nakamura E (2004) Precise analysis of the 228Ra/226Ra isotope ratio for short-lived U-series disequilibria in natural samples by total evaporation thermal ionization mass spectrometry (TE-TIMS). J Anal At Spectrom 19:717–727. https://doi.org/10.1039/b400829d

    Article  CAS  Google Scholar 

  52. Paul M, Bridgestock L, Rehkämper M et al (2015) High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry. Anal Chim Acta 863:59–69. https://doi.org/10.1016/j.aca.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  53. Wasserburg GJ, Jacousen SB, DePaolo DJ et al (1981) Precise determination of Sm Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2323. https://doi.org/10.1016/0016-7037(81)90085-5

    Article  CAS  Google Scholar 

  54. Rankenburg K, Brandon AD, Neal CR (2006) Neodymium isotope evidence for a chondritic composition of the moon. Science (80-) 312:1369–1372. https://doi.org/10.1126/science.1126114

    Article  CAS  Google Scholar 

  55. Chang TL, Zhao MT, Li WJ et al (2002) Absolute isotopic composition and atomic weight of samarium. Int J Mass Spectrom 218:167–172. https://doi.org/10.1016/S1387-3806(02)00665-6

    Article  CAS  Google Scholar 

  56. Papanastassiou DA, De Paolo DJ, Wasserburg G (1977) Rb–Sr and Sm–Nd chronology and genealogy of mare basalts from the sea of Tranquility. In: Proceedings of 8th lunar and planetary science conference. Pergamon Press, New York, pp 1639–1672

  57. Hanson SK, Pollington AD, Waidmann CR et al (2016) Measurements of extinct fission products in nuclear bomb debris: determination of the yield of the trinity nuclear test 70 y later. Proc Natl Acad Sci USA 113:8104–8108. https://doi.org/10.1073/pnas.1602792113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank an anonymous reviewer for a very thorough review of this paper which resulted in several substantial improvements. Thanks are also due to Andrew Reinhard, Azim Kara and Joel Maassen for discussions that substantially helped in the development of this study. This material is based upon work supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number(s) DE-NA0003180. In addition, this work was funded by the National Nuclear Security Administration Office of Defense Nuclear Nonproliferation Research and Development. The Glenn T. Seaborg Institute and the African American Partnership Program at Los Alamos National Laboratory also supported part of this work. LA-UR-20-26067.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James Louis-Jean or Jeremy D. Inglis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis-Jean, J., Inglis, J.D., Hanson, S. et al. New loading method for high precision Sm isotope analysis of nuclear materials using thermal ionization mass spectrometry. J Radioanal Nucl Chem 327, 317–327 (2021). https://doi.org/10.1007/s10967-020-07513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07513-x

Keywords

Navigation