Skip to main content
Log in

Development of HCl-free solid-phase extraction combined with ICP-MS/MS for rapid assessment of difficult-to-measure radionuclides. Part I: Selective measurement of 93Zr and 93Mo in concrete rubble

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new HCl-free chromatographic separation procedure has been developed for sequential separation of Zr and Mo from concrete matrices for selective measurement of 93Zr and 93Mo by ICP-MS/MS. The recoveries of greater than 90% for Zr and Mo from concretes could be achieved. The measurement condition was optimized for complete suppression of interferences from 93Nb and peak tailing from abundant isotopes of Zr and Mo in concrete matrices. The removal of interferences was verified by measurement of radio-contamination-free concretes used as a sample matrix blank. Method detection limits of 1.7 mBq g− 1 and 0.2 Bq g− 1 were achieved for, respectively, 93Zr and 93Mo in the concrete matrices. The interference removal factor for Nb (equivalent to the decontamination factor in radiochemical separation) was of the order of 105, and the abundance sensitivity was of the order of 10─8, indicating that the developed method is reliable for verifying the presence of ultralow concentrations of 93Zr and 93Mo. The present method is suitable for the rapid assessment of 93Zr and 93Mo for radioactivity inventory of concrete rubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Japan Ministry of Economy, Trade and Industry, METI. Storage conditions of the rubble and tree. Available at: http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensuitaisakuteam/2017/07/3-04-02.pdf. In Japanese. Accessed on April 2020.

  2. Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48

    Article  CAS  Google Scholar 

  3. Tanaka K, Yasuda M, Watanabe K, Hoshi A, Katayama A, Higuchi H, Kameo Y (2013) Review and application of analytical flow to accumulated water generated at Fukushima Daiichi NPS. KEK Proc 2013–17:17–26

  4. Shimada K, Iwasaki M, Kurosawa K, Hamada Y, Yonekawa M, Sato S, Kaji N, Koyama T, Nakayama S (2017) Application of ICP-MS to analytical methods for samples from 1F site at Okuma Analysis and Research Center. In: The 6th Asia-Pacific Symposium on Radiochemistry, Korea

  5. Tanaka K, Shimada A, Hoshi A, Yasuda M, Ozawa M, Kameo Y (2014) Radiochemical analysis of rubble and trees collected from Fukushima Daiichi Nuclear Power Station. J Nucl Sci Technol 51(7,8):1032–1043

    Article  CAS  Google Scholar 

  6. Erdtmann G, Soyka W (1975) The gamma-ray lines of radionuclides, ordered by atomic and mass number. Part II. Z = 58–100 (Cerium-Fermium). J Radioanal Chem 27:137–286

    Article  CAS  Google Scholar 

  7. Espartero AG, Suarez JA, Rodrıgez M, Pina G (2002) Radiochemical analysis of 93Zr. Appl Radiat Isot 56:41–46

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira TC, Monteiro RPG, Oliveira AH (2011) A selective separation method for 93Zr in radiochemical analysis of low and intermediate level wastes from nuclear power plants. J Radioanal Nucl Chem 289:497–501

    Article  CAS  Google Scholar 

  9. Oliveira TC, Monteiro RPG, Kastner GF, Bessueille-Barbier F, Oliveira AH (2014) Radiochemical methodologies applied to determination of zirconium isotopes in low-level waste samples from nuclear power plants. J Radioanal Nucl Chem 302(1):41–47

    Article  CAS  Google Scholar 

  10. Lehto J, Hou X (2011) Chemistry and analysis of radionuclides: laboratory techniques and methodology. Wiley–VCH, Weinheim

    Google Scholar 

  11. Shimada A, Ohmori H, Kameo Y (2017) Development of determination method of 93Mo content in metal waste generated at the Japan Power Demonstration Reactor. J Radioanal Nucl Chem 314:1361–1365

    Article  CAS  Google Scholar 

  12. Osváth S, Vajda N, Molnár Z et al (2010) Determination of 237Np, 93Zr and other long-lived radionuclides in medium and low-level radioactive waste samples. J Radioanal Nucl Chem 286:675–680

    Article  Google Scholar 

  13. Osváth S, Vajda N, Stefánka Z et al (2011) Determination of 93Zr and 237Np in nuclear power plant wastes. J Radioanal Nucl Chem 287:459–463

    Article  Google Scholar 

  14. Alfonso MC, Bennett ME, Folden CM (2016) Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media. J Radioanal Nucl Chem 307:1529–1536

    Article  CAS  Google Scholar 

  15. Osváth S, Vajda N, Molnár Z et al (2017) Determination of 93Zr in nuclear power plant wastes. J Radioanal Nucl Chem 314:31–38

    Article  Google Scholar 

  16. Remenec B, Dulanská S, Mátel Ľ. et al ( (2014) Development of a method for the determination of 93Zr and 94Nb in radioactive waste using TEVA® resin. J Radioanal Nucl Chem 302:117–122

    Article  CAS  Google Scholar 

  17. Shimada A, Kameo Y (2016) Development of an extraction chromatography method for the analysis of 93Zr, 94Nb, and 93Mo in radioactive contaminated water generated at the Fukushima Daiichi Nuclear Power Station. J Radioanal Nucl Chem 310:1317–1323

    Article  CAS  Google Scholar 

  18. Dulanská S, Remenec B, Gardoňová V et al (2012) Determination of 93Zr in radioactive waste using ion exchange techniques. J Radioanal Nucl Chem 293:635–640

    Article  Google Scholar 

  19. Lu W, Anderson T et al (2015) Zr/Nb isobar separation experiment for future 93Zr AMS measurement. Nucl Instrum Meth B 361:491–495

    Article  CAS  Google Scholar 

  20. Asai S, Hanzawa Y, Konda M, Suzuki D, Magara M, Kimura T, Ishihara R, Saito K, Yamada S, Hirota H (2018) Rapid separation of zirconium using microvolume anion-exchange cartridge for 93Zr determination with isotope dilution ICP-MS. Talanta 185(1):98–105

    Article  CAS  PubMed  Google Scholar 

  21. Shimada A, Ozawa M, Yabuki K, Kimiyama K, Sato K, Kameo Y (2014) Development of a separation method for molybdenum from zirconium, niobium, and major elements of rubble samples. J Chromatogr A 1371:163–167

    Article  CAS  PubMed  Google Scholar 

  22. Osváth S, Qiao J, Hou X (2019) Preparation of 93Mo solution using proton irradiated Nb. J Radioanal Nucl Chem 322:1833–1839

    Article  Google Scholar 

  23. Triskem, International, ZR resin product sheet, https://www.triskem-international.com/scripts/files/5c5864b3c2ced4.93092048/PS_ZR-Resin_EN_171218.pdf. Accessed  April 2020

  24. Zheng J, Tagami K, Homma-Takeda S, Bu W (2013) The key role of atomic spectrometry in radiation protection. J Anal At Spectrom 28:1676–1699

    Article  CAS  Google Scholar 

  25. Croudace IW, Russell BC, Warwick PE (2017) Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: a review. J Anal At Spectrom 32:494–526

    Article  CAS  Google Scholar 

  26. Bu W, Ni Y, Steinhauser G, Zheng W, Zheng J, Furuta N (2018) The role of mass spectrometry in radioactive contamination assessment after the Fukushima nuclear accident. J Anal At Spectrom 33:519–546

    Article  CAS  Google Scholar 

  27. Warwick PE, Russell BC, Croudace IW, Zacharauskas Z (2019) Evaluation of inductively coupled plasma tandem mass spectrometry for radionuclide assay in nuclear waste characterisation J. Anal At Spectrom 34:1810

    Article  CAS  Google Scholar 

  28. Warwick PE, Russell BC, Croudace IW, Zacharauskas Z (2019) Evaluation of inductively coupled plasma tandem mass spectrometry for radionuclide assay in nuclear waste characterisation. J Anal At Spectrom 34:1810

    Article  CAS  Google Scholar 

  29. Bolea-Fernandez E, Balcaen L, Resano M, Vanhaecke F (2017) Overcoming spectral overlap via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): a tutorial review. J Anal At Spectrom 32:1660–1679

    Article  CAS  Google Scholar 

  30. Shikamori Y, Nakano K, Sugiyama N, Kakuta S (2012) Agilent Application Note, https://www.agilent.com/cs/library/applications/5991-0321EN_AppNote_8800_I.pdf. Accessed 22 Apr 2020

  31. Ohno T, Muramatsu Y, Shikamori Y, Toyama C, Okabe N, and Matsuzaki H (2013) Determination of ultratrace 129I in soil samples by Triple Quadrupole ICP-MS and its application to Fukushima soil samples. J. Anal. At. Spectrom. 28:1283–1287.

    Article  CAS  Google Scholar 

  32. Ohno T, Muramatsu Y (2014) Determination of radioactive cesium isotope ratios by triple quadrupole ICP-MS and its application to rainwater following the Fukushima Daiichi nuclear power plant accident. J. Anal. Atomic Spectrom. 29(2):347–351.

    Article  CAS  Google Scholar 

  33. Suzuki T, Yamamura T, Abe C et al (2018) Actinide molecular ion formation in collision/reaction cell of triple quadrupole ICP-MS/MS and its application to quantitative actinide analysis. Radioanal Nucl Chem 318:221–225

    Article  CAS  Google Scholar 

  34. Qiao J, Xu Y (2018) Direct measurement of uranium in seawater by inductively coupled plasma mass spectrometry. Talanta 183:18–23

    Article  CAS  PubMed  Google Scholar 

  35. Tanimizu M, Sugiyama MN, Ponzevera NE, Bayon EG G (2013) Determination of ultra-low 236U/238U isotope ratios by tandem quadrupole ICP-MS/MS. J Anal At Spectrom 28:1372–1376

    Article  CAS  Google Scholar 

  36. Silva DF et al (2020) A new method for determining 236U/238U isotope ratios in environmental samples by means of ICP-MS/MS. Talanta 206:120221

    Article  Google Scholar 

  37. Xing S, Zhang W, Qiao J, Hou X (2018) Determination of ultra-low level plutonium isotopes (239Pu, 240Pu) in environmental samples with high uranium. Talanta 187:357–364

    Article  CAS  PubMed  Google Scholar 

  38. Tiong LYD, Tan S (2019) In situ determination of 238Pu in the presence of uranium by triple quadrupole ICP-MS (ICP-QQQ-MS). J Radioanal Nucl Chem 322:399–406

    Article  CAS  Google Scholar 

  39. Tiong LYD, Ho MLD, Pong BK et al (2017) A rapid method for quantifying 238Pu in the presence of natural 238U via quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and utilizing a resin-based extraction procedure. J Radioanal Nucl Chem 314:1347–1351

    Article  CAS  Google Scholar 

  40. Amr MA, Helal AFI, Al-Kinani AT, Balakrishnan P (2016) Ultra-trace determination of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu by triple quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments. J Environ Radioactiv 153:73–87

    Article  CAS  Google Scholar 

  41. Tomita J, Takeuchi E (2019) Rapid analytical method of 90Sr in urine sample: Rapid separation of Sr by phosphate co-precipitation and extraction chromatography, followed by determination by triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). Appl Radiat Isotopes 150:103–109

    Article  CAS  Google Scholar 

  42. Ohno T, Hirono M, Kakuta S, Sakata S (2018) Determination of strontium 90 in environmental samples by triple quadrupole ICP-MS and its application to Fukushima soil samples. J Anal At Spectrom 33:1081–1085

    Article  CAS  Google Scholar 

  43. Petrov P, Russell B, Douglas DN, Goenaga-Infante H (2018) Interference-free determination of sub ng kg– 1 levels of long-lived 93Zr in the presence of high concentrations (µg kg– 1) of 93Mo and 93Nb using ICP-MS/MS. Anal Bioanal Chem 410(3):1029–1037

    Article  CAS  PubMed  Google Scholar 

  44. Warwick FE, Russell BC, Croudace IW, Zacharauskas Z (2019) Evaluation of inductively coupled plasma tandem mass spectrometry for radionuclide assay in nuclear waste characterisation. J Anal At Spectrom 34:1810–1821

    Article  CAS  Google Scholar 

  45. Gaudry A, Delmas R (2007) Multielement analysis of concrete from nuclear reactors by INAA, ICP-MS and ICP-AES. J Radioanal Nucl Chem 271:159–164

    Article  CAS  Google Scholar 

  46. McCurdy E, Woods G, Sugiyama N (2019) Method development with ICP-MS/MS: tools and techniques to ensure accurate results in reaction mode. Spectrosc Spec Issue 34(9):20–27

    Google Scholar 

  47. Jones DMR (2007) A study of ion-molecule reactions in a dynamic reaction cell to improve elemental analysis with inductively coupled plasma-mass spectrometry. PhD Dissertation. The Ohio State University (Ohio United states), 583.

  48. Japan Nuclear Safety Commission (2007) Radioactivity concentration upper limit for the disposal of low-level radioactive solid waste. (in Japanese)  https://www.rwmc.or.jp/law/file/shiryo_14.pdf. AccessedApril 2020.

Download references

Acknowledgements

The present study is carried out under the research program based on subsidy to the International Research Institute for Nuclear Decommissioning (IRID) by Ministry of Economy, Trade and Industry, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Khoai Do.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material1 (DOCX 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, VK., Furuse, T., Murakami, E. et al. Development of HCl-free solid-phase extraction combined with ICP-MS/MS for rapid assessment of difficult-to-measure radionuclides. Part I: Selective measurement of 93Zr and 93Mo in concrete rubble. J Radioanal Nucl Chem 327, 543–553 (2021). https://doi.org/10.1007/s10967-020-07503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07503-z

Keywords

Navigation