Skip to main content
Log in

An interlaboratory collaboration to determine consensus 231Pa/235U model ages of a uranium certified reference material for nuclear forensics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Application of the 231Pa/235U radiochronometer for nuclear forensic investigations is challenged by a lack of certified reference materials with 231Pa/235U model purification dates. The Japan Atomic Energy Agency, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory completed an interlaboratory study measuring 231Pa/235U model ages of New Brunswick Laboratory CRM U100. Results from independent laboratories were combined to calculate a consensus 231Pa/235U model purification date for CRM U100 of March 26, 1959 ± 237 days. This 231Pa/235U consensus date for CRM U100 may be used by the nuclear forensic community for quality control of 231Pa/235U radiochronometry measurements of unknown materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kristo MJ, Gaffney AM, Marks N, Knight K, Cassata WS, Hutcheon ID (2016) Nuclear forensic science: analysis of nuclear material out of regulatory control. Ann Rev Earth Planet Sci 44:555–579

    Article  CAS  Google Scholar 

  2. Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Determination of the age of highly enriched uranium. Anal Bioanal Chem 374(3):379–384

    Article  CAS  Google Scholar 

  3. LaMont SP, Hall G (2005) Uranium age determination by measuring the 230Th/234U ratio. J Radioanal Nucl Chem 264(2):423–427

    Article  Google Scholar 

  4. Varga Z, Suranyi G (2007) Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry. Anal Chim Acta 599:16–23

    Article  CAS  Google Scholar 

  5. Varga Z, Wallenius M, Mayer K (2010) Age determination of uranium samples by inductively coupled plasma mass spectrometry using direct measurement and spectral deconvolution. J Anal At Spectrom 25:1958–1962

    Article  CAS  Google Scholar 

  6. Williams RW, Gaffney AM (2011) 230Th–234U model ages of some uranium standard reference materials. Proc Radiochim Acta 1:31–35

    Google Scholar 

  7. Pointurier F, Hubert A, Roger G (2013) A method for dating small amounts of uranium. J Radioanal Nucl Chem 296:593–598

    Article  CAS  Google Scholar 

  8. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A (2015) Round-robin 230Th–234U age dating of bulk uranium for nuclear forensics. J Radioanal Nucl Chem 235:129–132

    Google Scholar 

  9. Treinen KC, Kinman WS, Chen Y, Zhu L, Cardon AMR, Steiner RE, Kayzar-Boggs TM, Williams RW, Zhao YG (2017) US-DOE and CIAE international cooperation in age-dating uranium standards. J Radioanal Nucl Chem 314(3):2469–2474

    Article  CAS  Google Scholar 

  10. Morgenstern A, Apostolidis C, Mayer K (2002) Age determination of highly enriched uranium: separation and analysis of 231Pa. Anal Chem 74:5513–5516

    Article  Google Scholar 

  11. Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) 235U–231Pa age dating of uranium materials for nuclear forensic investigations. J Anal At Spectrom 28:666–674

    Article  CAS  Google Scholar 

  12. Kayzar TM, Williams RW (2016) Developing Ra-226 and Ac-227 age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers. J Radioanal Nucl Chem 307(3):2061–2068

    Article  CAS  Google Scholar 

  13. Rolison JM, Treinen KC, McHugh KC, Gaffney AM, Williams RW (2017) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to uranium certified reference materials. J Radioanal Nucl Chem 314:2459–2467

    Article  CAS  Google Scholar 

  14. Higginson M, Gilligan C, Taylor F, Knight D, Kaye P, Shaw T, Thompson P (2018) Development of rapid methodologies for uranium age dating. J Radioanal Nucl Chem 318:157–164

    Article  CAS  Google Scholar 

  15. Varga Z, Nicholl A, Hrnecek E, Wallenius M, Mayer K (2018) Measurement of the 231Pa/235U ratio for the age determination of uranium materials. J Radioanal Nucl Chem 318(3):1565–1571

    Article  CAS  Google Scholar 

  16. Jones RT, Merritt JS, Okazaki A (1986) A measurement of the thermal neutron capture cross section of 232Th. Nucl Sci Eng 93:171–180

    Article  CAS  Google Scholar 

  17. Usman K, MacMahon TD (2000) Determination of the half-life of 233Pa. App Radiat Isotopes 52:585–589

    Article  CAS  Google Scholar 

  18. Treinen KC, Samperton KM, Lindvall RE, Wimpenny JB, Gaffney AM, Bavio M, Baransky EJ, Williams RW (2019) Evaluating uranium radiochronometry by single-collector mass spectrometry for nuclear forensics: a multi-instrument investigation. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06832-y

    Article  Google Scholar 

  19. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889

    Article  Google Scholar 

  20. Robert J, Miranda CF, Muxart R (1969) Mesure de la periode du protactinium-231 par microcalorimetrie. Radiochim Acta 11(2):104–108

    Article  CAS  Google Scholar 

  21. Bureau International des Poids et Mesures (BIPM) (2010) Monograph 5: table of radionuclides, 5-A: 22:244. 465. http://www.nucleide.org/DDEP_WG/DDEPdata.htm. Accessed 11 March 2019

  22. National Bureau of Standards Special Publication 260-27 (1971) Standard reference materials: Uranium isotopic standard reference materials. US Department of Commerce, US Government Printing Office, Washington DC

  23. Petit GS (1960) Preparation of uranium isotopic standards for the National Bureau of Standards. Report Number KL-8 Addendum-18. Union Carbide Nuclear Company, Oak Ridge Tennessee

  24. Essex RM, Williams RW, Treinen KC, Colle R, Fitzgerald R, Galea R, Keightley J, LaRosa J, Laureano-Perez L, Nour S, Pibida L (2019) Preparation and calibration of a 231Pa reference material. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06711-6

    Article  Google Scholar 

  25. Treinen KC, Gaffney AM, Rolison JM, Samperton KM, McHugh KC, Miller ML, Williams RW (2018) Improved protactinium spike calibration method applied to 231Pa–235U age-dating of certified reference materials for nuclear forensics. J Radioanal Nucl Chem 318(1):209–219

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa M. Kayzar-Boggs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayzar-Boggs, T.M., Treinen, K.C., Okubo, A. et al. An interlaboratory collaboration to determine consensus 231Pa/235U model ages of a uranium certified reference material for nuclear forensics. J Radioanal Nucl Chem 323, 1189–1195 (2020). https://doi.org/10.1007/s10967-020-07030-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07030-x

Keywords

Navigation