Skip to main content
Log in

Development of a non-destructive isotopic analysis method by gamma-ray emission measurement after negative muon irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Variations in isotopic abundance provide useful information for various scientific fields. Herein we performed a feasibility study by non-destructive isotopic analysis of negative muons. We irradiated two lead plate samples, one with the natural isotopic composition and one enriched with 208Pb, with negative muons and observed the gamma rays from 208Tl with a half-life of 3 min generated via muon absorption by 208Pb during muon irradiation. The isotopic abundance of 208Pb in natPb was successfully determined without sample destruction from the gamma ray intensity to be 69%, which agreed well with the mass spectrometry results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Patterson C (1956) Age of meteorites and the earth. Geochim Cosmochim Acta 10:230–237. https://doi.org/10.1016/0016-7037(56)90036-9

    Article  CAS  Google Scholar 

  2. Goucher CL, Teilhet JH, Wilson KR, Chow TJ (1976) Lead isotope studies of metal source for ancient Nigerian ‘bronzes’. Nature 262:130–131. https://doi.org/10.1038/262130a0

    Article  Google Scholar 

  3. Ninomiya K, Kudo T, Strasser P, Terada K, Kawai Y, Tampo M, Miyake Y, Shinohara A, Kubo MK (2019) Development of non-destructive isotopic analysis methods using muon beams and their application to the analysis of lead. J Radioanal Nucl Chem 320:801–805. https://doi.org/10.1007/s10967-019-06506-9

    Article  CAS  Google Scholar 

  4. Ponomarev LI (1973) Molecular structure effects on atomic and nuclear capture of mesons. Annu Rev Nucl Sci 23:395. https://doi.org/10.1146/annurev.ns.23.120173.002143

    Article  CAS  Google Scholar 

  5. Measday DF (2001) The nuclear physics of muon capture. Phys Rep 354:243–409. https://doi.org/10.1016/S0370-1573(01)00012-6

    Article  CAS  Google Scholar 

  6. Ninomiya K, Ito TU, Higemoto W, Kawamura N, Strasser P, Nagatomo T, Shimomura K, Miyake Y, Kita M, Shinohara A, Kubo MK, Miura T (2019) Negative muon capture ratios for nitrogen oxide molecules. J Radioanal Nucl Chem 319:767–773. https://doi.org/10.1007/s10967-018-6366-3

    Article  CAS  Google Scholar 

  7. Köhler E, Bergmann R, Daniel H, Ehrhart P, Hartmann FJ (1981) Application of muonic X-ray techniques to the elemental analysis of archeological objects. Nucl Instrum Methods Phys Res 187:563–568. https://doi.org/10.1016/0029-554X(81)90389-X

    Article  Google Scholar 

  8. Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo MK, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M (2014) A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam. Sci Rep 4:5072. https://doi.org/10.1038/srep05072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubo K (2016) Non-destructive elemental analysis using negative muon. J Phys Soc Jpn 85:091015. https://doi.org/10.7566/JPSJ.85.091015

    Article  Google Scholar 

  10. Ninomiya K, Kubo MK, Nagatomo T, Higemoto W, Ito TU, Kawamura N, Strasser P, Shimomura K, Miyake Y, Suzuki T, Kobayashi Y, Sakamoto S, Shinohara A, Saito T (2015) Nondestructive elemental depth-profiling analysis by muonic X-ray measurement. Anal Chem 87:4597–4600. https://doi.org/10.1021/acs.analchem.5b01169

    Article  CAS  PubMed  Google Scholar 

  11. Fricke G, Bernhardt C, Heilig K, Schaller LA, Schellenberg L, Shera EB, De Jager CW (1995) Nuclear ground state charge radii from electromagnetic interactions. Atom Data Nucl Data 60:177–285. https://doi.org/10.1006/adnd.1995.1007

    Article  CAS  Google Scholar 

  12. Kessler D, Mes H, Thompson AC, Anderson HL, Dixit MS, Hargrove CK, McKee RJ (1975) Muonic X-rays in lead isotopes. Phys Rev C 11:1719. https://doi.org/10.1103/PhysRevC.11.1719

    Article  CAS  Google Scholar 

  13. Budick B, Anigstein R, Kast JW (1983) Delayed gamma rays from muon capture on 207Pb. Nucl Phys A 393:469–490. https://doi.org/10.1016/0375-9474(83)90152-5

    Article  Google Scholar 

  14. Ejiri H, Hashim IH, Hino Y, Kuno Y, Matsumoto Y, Ninomiya K, Sakamoto H, Sato A, Shima T, Shinohara A, Takahisa K, Tran NH (2013) Nuclear γ rays from stopped muon capture reactions for nuclear isotope detection. J Phys Soc Jpn 82:044202. https://doi.org/10.7566/JPSJ.82.044202

    Article  CAS  Google Scholar 

  15. Hashim IH, Ejiri H, Shima T, Takahisa K, Sato A, Kuno Y, Ninomiya K, Kawamura N, Miyake Y (2018) Muon capture reaction on 100Mo to study the nuclear response for double-β decay and neutrinos of astrophysics origin. Phys Rev C 97:014617. https://doi.org/10.1103/PhysRevC.97.014617

    Article  CAS  Google Scholar 

  16. Shimomura K, Koda A, Strasser P, Kawamura N, Fujimori H, Makimura S, Nakahara K, Ishida K, Nishiyama K, Miyake Y (2009) Superconducting muon channel at J-PARC. Nucl Instrum Methods A 600:192–194. https://doi.org/10.1016/j.nima.2008.11.029

    Article  CAS  Google Scholar 

  17. Ninomiya K, Kubo MK, Strasser P, Shinohara A, Tampo M, Kawamura N, Miyake Y (2018) Isotope identification of lead by muon induced X-ray and gamma-ray measurements. JPS Conf Proc 21:011043. https://doi.org/10.7566/JPSCP.21.011043

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Hamada and S. Doiuchi (WDB EUREKA) for their kind help with the muonic X-ray measurements. The muon experiments at the Materials and Life Science Experimental facility of J-PARC were performed under a user program (Proposal Nos. 2016B0207 and 2017A0177). This research was partially supported by Japan Society for the Promotion of Science of the Grant-in-Aid for Scientific Research on Innovative Areas (18H05457, B01 team of “Toward new frontiers: Encounter and synergy of state-of-the-art astronomical detectors and exotic quantum beams”) and the Grant-in-Aid for Scientific Research (C) (18K11922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ninomiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudo, T., Ninomiya, K., Strasser, P. et al. Development of a non-destructive isotopic analysis method by gamma-ray emission measurement after negative muon irradiation. J Radioanal Nucl Chem 322, 1299–1303 (2019). https://doi.org/10.1007/s10967-019-06682-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06682-8

Keywords

Navigation