Skip to main content
Log in

New composites for neutron radiation shielding

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A castable polyurethane (PUR) with soft segment made by polytetrahydrofuran polyol (or polytretramethylene ether glycol = PTMEG) derived from renewable sources was used as polymer matrix to prepare neutron shields. The PUR polymer matrix was filled with 20.4% of amorphous boron or with 20.9% by weight of hexagonal boron nitride (h-BN). The PUR composites were cast in foils 2 mm thick and tested as thermal neutron shields against reference unfilled PUR foils. The method of sandwitched copper wire activation till saturation was used for the determination of the neutron shielding effectiveness. Both the linear and massic attenuation coefficient of the two PUR composites were determined. Making 100 the linear attenuation coefficient μ of unfilled PUR, the μ value of 20.4% amorphous boron filled composite was found at 224 while that of 20.9% filled BN was found at 182. Making 100 the mass attenuation coefficient μ/ρ of the unfilled PUR the amorphous boron PUR filled composite was found at 311 while the BN filled PUR composite stopped at 178. Unfilled PUR and PUR composites were studied with FT-IR spectroscopy and DSC before and after neutron processing with a total dose of 1.5 × 1013 cm−2. No significant changes were detected neither in the FT-IR spectra nor in the DSC thermal behaviour confirming the excellent radiation resistance of PUR and its suitability as polymer matrix for neutrons and more in general radiation shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martin JE (2006) Physics for radiation protection: a handbook. Wiley, New York

    Book  Google Scholar 

  2. Stabin MG (2007) Radiation protection and dosimetry: an introduction to health physics. Springer, Berlin

    Google Scholar 

  3. Attix FH (2008) Introduction to radiological physics and radiation dosimetry. Wiley, New York

    Google Scholar 

  4. Letaw JR, Silberberg R, Tsao CH (1989) Radiation hazards on space missions outside the magnetosphere. Adv Space Res 9:285–291

    Article  CAS  PubMed  Google Scholar 

  5. Miroshnichenko L (2003) Radiation hazard in space. Springer, New York

    Book  Google Scholar 

  6. Singleterry RC (2013) Radiation engineering analysis of shielding materials to assess their ability to protect astronauts in deep space from energetic particle radiation. Acta Astronaut 91:49–54

    Article  CAS  Google Scholar 

  7. Campajola L, Di Capua F (2017) Applications of accelerators and radiation sources in the field of space research and industry. Top Curr Chem 374:84

    Article  CAS  Google Scholar 

  8. Song Y, Wu W, Du S (2014) Tokamak engineering mechanics. Springer, Berlin

    Book  Google Scholar 

  9. Wilson JW, Clowdsley MS, Shinn JL, Singleterry RC, Tripathi RK, Cucinotta FA, Heinbockel JH, Badavi FF, Atwell W (2000) Neutrons in space: shield models and design issues (No. 2000-01-2414, 2000). SAE Technical Paper

  10. Choppin GR, Rydberg J (1980) Nuclear chemistry. Theory and applications. Pergamon Press, Oxford

    Google Scholar 

  11. Filges D, Goldenbaum F (2009) Handbook of spallation research: theory, experiments and applications. Wiley, New York

    Book  Google Scholar 

  12. Haffner J (1967) Radiation and shielding in space. Academic Press, New York

    Google Scholar 

  13. Woods R, Pikaev A (1994) Applied radiation chemistry: radiation processing. Wiley, New York

    Google Scholar 

  14. Guetersloh S, Zeitlin C, Heilbronn L, Miller J, Komiyama T, Fukumura A, Iwata Y, Murakami T, Bhattacharya M (2006) Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 252:319–332

    Article  CAS  Google Scholar 

  15. Shin JW, Lee JW, Yu S, Baek BK, Hong JP, Seo Y, Koo CM (2014) Polyethylene/boron-containing composites for radiation shielding. Thermochim Acta 585:5–9

    Article  CAS  Google Scholar 

  16. Kim J, Lee BC, Uhm YR, Miller WH (2014) Enhancement of thermal neutron attenuation of nano-B4C,-BN dispersed neutron shielding polymer nanocomposites. J Nucl Mater 453:48–53

    Article  CAS  Google Scholar 

  17. Harrison C, Weaver S, Bertelsen C, Burgett E, Hertel N, Grulke E (2008) Polyethylene/boron nitride composites for space radiation shielding. J Appl Polym Sci 109:2529–2538

    Article  CAS  Google Scholar 

  18. Jung J, Kim J, Uhm YR, Jeon JK, Lee S, Lee HM, Rhee CK (2010) Preparations and thermal properties of micro-and nano-BN dispersed HDPE composites. Thermochim Acta 499:8–14

    Article  CAS  Google Scholar 

  19. Mortazavi SMJ, Kardan M, Sina S, Baharvand H, Sharafi N (2016) Design and fabrication of high density borated polyethylene nanocomposites as a neutron shield. Int J Radiat Res 14:379–383

    Google Scholar 

  20. İrim ŞG, Wis AA, Keskin MA, Baykara O, Ozkoc G, Avcı A, Dogru M, Karakoç M (2018) Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites. Radiat Phys Chem 144:434–443

    Article  CAS  Google Scholar 

  21. Belgin EE, Aycik GA (2015) Preparation and radiation attenuation performances of metal oxide filled polyethylene based composites for ionizing electromagnetic radiation shielding applications. J Radioanal Nucl Chem 306(1):107–117

    Article  CAS  Google Scholar 

  22. Cummings CS, Lucas EM, Marro JA, Kieu TM, DesJardins JD (2011) The effects of proton radiation on UHMWPE material properties for space flight and medical applications. Adv Space Res 48:1572–1577

    Article  CAS  Google Scholar 

  23. Zhong WH, Sui G, Jana S, Miller J (2009) Cosmic radiation shielding tests for UHMWPE fiber/nano-epoxy composites. Compos Sci Technol 69:2093–2097

    Article  CAS  Google Scholar 

  24. Özdemir T, Akbay IK, Uzun H, Reyhancan IA (2016) Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Progr Nucl Energy 89:102–109

    Article  CAS  Google Scholar 

  25. Huang W, Yang W, Ma Q, Wu J, Fan J, Zhang K (2016) Preparation and characterization of γ-ray radiation shielding PbWO4/EPDM composite. J Radioanal Nucl Chem 309:1097–1103

    Article  CAS  Google Scholar 

  26. Abdel-Aziz MM, Gwaily SE, Makarious AS, Abdo AES (1995) Ethylene-propylene diene rubber/low density polyethylene/boron carbide composites as neutron shields. Polym Degrad Stab 50:235–240

    Article  CAS  Google Scholar 

  27. Özdemir T, Güngör A, Reyhancan İA (2017) Flexible neutron shielding composite material of EPDM rubber with boron trioxide: mechanical, thermal investigations and neutron shielding tests. Radiat Phys Chem 131:7–12

    Article  CAS  Google Scholar 

  28. Mheemeed AK, Hasan HI, Al-Jomaily FM (2012) Gamma-ray absorption using nitrile rubber—lead mixtures as radiation protection shields. J Radioanal Nucl Chem 291:653–659

    Article  CAS  Google Scholar 

  29. Gwaily SE, Badawy MM, Hassan HH, Madani M (2002) Natural rubber composites as thermal neutron radiation shields: I. B4C/NR composites. Polym Test 21:129–133

    Article  CAS  Google Scholar 

  30. Gwaily SE, Hassan HH, Badawy MM, Madani M (2002) Natural rubber composites as thermal neutron radiation shields: II H3BO3/NR composites. Polym Test 21:513–517

    Article  CAS  Google Scholar 

  31. Gwaily SE, Badawy MM, Hassan HH, Madani M (2003) Influence of thermal aging on crosslinking density of boron carbide/natural rubber composites. Polym Test 22:3–7

    Article  Google Scholar 

  32. Shaltout NA (2009) Effect of electron beam irradiation and degree of boric acid loading on the properties of styrene-butadiene rubber. React Funct Polym 69:229–233

    Article  CAS  Google Scholar 

  33. Chai H, Tang X, Ni M, Chen F, Zhang Y, Chen D, Qiu Y (2015) Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J Nucl Mater 464:210–215

    Article  CAS  Google Scholar 

  34. Sukegawa AM, Anayama Y, Okuno K, Sakurai S, Kaminaga A (2011) Flexible heat resistant neutron shielding resin. J Nucl Mater 417:850–853

    Article  CAS  Google Scholar 

  35. Emmanuel A, Raghavan J (2015) Influence of structure on radiation shielding effectiveness of graphite fiber reinforced polyethylene composite. Adv Space Res 56:1288–1296

    Article  CAS  Google Scholar 

  36. Cataldo F, Iglesias-Groth S (2017) Neutron damage of hexagonal boron nitride: h-BN. J Radioanal Nucl Chem 313:261–271

    Article  CAS  Google Scholar 

  37. Cataldo F, Iglesias-Groth S, Hafez Y (2017) Neutron bombardment of boron carbide B12C3: a FT-IR, calorimetric (DSC) and ESR study. Fuller Nanotub Carbon Nanostruct 25:371–378

    Article  CAS  Google Scholar 

  38. Pascale S, Scatena E, Fabbri F, Cataldo F (2017) Morphological and structural properties of neutron-irradiated B12C3 boron carbide microcrystals. Fuller Nanotub Carbon Nanostruct 25:585–588

    Article  CAS  Google Scholar 

  39. Cataldo F, Iglesias-Groth S, Prata M (2017) Neutron bombardment of lithium bis (oxalato) borate: LiBOB. J Radioanal Nucl Chem 313:239–247

    Article  CAS  Google Scholar 

  40. Cataldo F (2000) A Raman study on radiation-damaged graphite by γ-rays. Carbon 38:634–636

    Article  CAS  Google Scholar 

  41. Cataldo F, Ursini O, Nasillo G, Caponnetti E, Carbone M, Valentini F, Palleschi G, Braun T (2013) Thermal properties, Raman spectroscopy and TEM images of neutron-bombarded graphite. Fuller Nanotub Carbon Nanostruct 21:634–643

    Article  CAS  Google Scholar 

  42. Cataldo F (2000) On the action of γ radiation on solid C60 and C70 fullerenes: a comparison with graphite irradiation. Fuller Nanotub Carbon Nanostruct 8:577–593

    CAS  Google Scholar 

  43. Cataldo F, Baratta GA, Strazzulla G (2002) He+ ion bombardment of C60 fullerene: an FT-IR and Raman study. Fuller Nanotub Carbon Nanostruct 10:197–206

    Article  CAS  Google Scholar 

  44. Cataldo F, Baratta GA, Ferini G, Strazzulla G (2003) He+ ion bombardment of C70 fullerene: an FT-IR and Raman study. Fuller Nanotub Carbon Nanostruct 11:191–199

    Article  CAS  Google Scholar 

  45. Iglesias-Groth S, Cataldo F, Hafez Y (2016) Neutron bombardment of C60 and C70 fullerenes: a spectroscopic and calorimetric study. Fuller Nanotub Carbon Nanostruct 24:547–554

    Article  CAS  Google Scholar 

  46. Cataldo F, Angelini G, Revay Z, Osawa E, Braun T (2014) Wigner energy of nanodiamond bombarded with neutrons or irradiated with γ radiation. Fuller Nanotub Carbon Nanostruct 22:861–865

    Article  CAS  Google Scholar 

  47. Cataldo F, Iglesias-Groth S, Hafez Y, Angelini G (2014) Neutron bombardment of single wall carbon nanohorn (SWCNH): DSC determination of the stored Wigner-Szilard energy. J Radioanal Nucl Chem 299:1955–1963

    Article  CAS  Google Scholar 

  48. Prata M, Alloni D, De Felice P, Palomba M, Pietropaolo A, Pillon M, Quintieri L, Santagata A, Valente P (2014) Italian neutron sources. Eur Phys J Plus 129:255

    Article  CAS  Google Scholar 

  49. Protti N, Bortolussi S, Prata M, Bruschi P, Altieri S, Nigg D (2012) Neutron spectrometry for the University of Pavia TRIGA™ thermal neutron source facility. Trans Am Nucl Soc 107:1269–1272

    Google Scholar 

  50. Alloni D, di Tigliole AB, Bruni J, Cagnazzo M, Cremonesi R, Magrotti G, Oddone M, Panaza F, Prata M, Salvini A (2013) Neutron flux characterization of the SM1 sub-critical multiplying complex of the Pavia University. Progr Nucl Energy 67:98–103

    Article  CAS  Google Scholar 

  51. Bhowmick AK, Stephens H (eds) (2001) Handbook of elastomers. CRC Press, Boca Raton, p 405

    Google Scholar 

  52. Gorna K, Gogolewski S (2003) The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab 79:465–474

    Article  CAS  Google Scholar 

  53. Tian Q, Takács E, Krakovský I, Horváth Z, Rosta L, Almásy L (2015) Study on the microstructure of polyester polyurethane irradiated in air and water. Polymers 7:1755–1766

    Article  CAS  Google Scholar 

  54. Walo M, Przybytniak G, Łyczko K, Piątek-Hnat M (2014) The effect of hard/soft segment composition on radiation stability of poly(ester-urethane)s. Radiat Phys Chem 94:18–21

    Article  CAS  Google Scholar 

  55. Dannoux A, Esnouf S, Begue J, Amekraz B, Moulin C (2005) Degradation kinetics of poly (ether-urethane) Estane® induced by electron irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 236:488–494

    Article  CAS  Google Scholar 

  56. Wei H, Xiong J, Chen X, Gao X, Xu Y, Fu Y (2007) Study on the radiation degradation of polyether-polyurethane induced by electron beam. J Radioanal Nucl Chem 274:525–530

    Article  CAS  Google Scholar 

  57. Sui H, Liu X, Zhong F, Li X, Wang B, Ju X (2014) Relationship between free volume and mechanical properties of polyurethane irradiated by gamma rays. J Radioanal Nucl Chem 300:701–706

    Article  CAS  Google Scholar 

  58. Kim TW, Kim SK, Park S, Park KH, Lee JM (2018) Effect of irradiation on the cryogenic mechanical characteristics of polyurethane foam. J Radioanal Nucl Chem 317:145–159

    Article  CAS  Google Scholar 

  59. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products (vol 13 of sugar series). Elsevier, Amsterdam

    Google Scholar 

  60. Cataldo F (1996) Iodine: a ring opening polymerization catalyst for tetrahydrofuran. Eur Polym J 32:1297–1302

    Article  CAS  Google Scholar 

  61. Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Cowman R, Higginbotham CL (2013) The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. Eur Polym J 49:1782–1795

    Article  CAS  Google Scholar 

  62. Werheit H, Filipov V, Kuhlmann U, Schwarz U, Armbrüster M, Leithe-Jasper A, Tanaka T, Higashi I, Lundström T, Gurin VN, Korsukova MM (2010) Raman effect in icosahedral boron-rich solids. Sci Technol Adv Mater 11:023001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cataldo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cataldo, F., Prata, M. New composites for neutron radiation shielding. J Radioanal Nucl Chem 320, 831–839 (2019). https://doi.org/10.1007/s10967-019-06526-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06526-5

Keywords

Navigation