Skip to main content
Log in

Radioactive aerosol permeability through Russian radiometric analytical (PF) filters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, the permeability of the radioactive aerosol particles through different types of Petryanov filters is studied. The experiments were performed with standard radon box, special diffusion battery and AIP-2 cascade impactor. During the experiments a significant breakthrough is observed for different aerosol filters. The various size modes of the radioactive aerosols passing throw the filter are studied. At low aerosol concentration, the penetration of 1 nm approximately 1% and for 20 nm is varied from 12 to 20%. The different types of filters prevented all unattached radon decay products and the most size activity became with AMTD ~ 10 nm. At high aerosol concentration, the activity of unattached fraction nearly deleted. The activity of aerosols with AMTD ~ 10 nm is increased. The filters prevented all particles higher than 0.8 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hinds WC (1999) Aerosol technology. Properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York

    Google Scholar 

  2. Wang J (2013) Effect of particle size and morphology on filtration of airborne nanoparticles. KONA Powder Part J 30:256–266

    Article  Google Scholar 

  3. Yang C (2012) Aerosol filtration application using fibrous media—an industrial perspective. Chin J Chem Eng 20(1):1–9

    Article  Google Scholar 

  4. Matulevicius J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D (2016) The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92:27–37

    Article  CAS  Google Scholar 

  5. Min T, Chen SC, Chang DQ, Xie X, Sun J, Pui DYH (2018) Filtration efficiency and loading characteristics of PM2.5 through composite filter media consisting of commercial HVAC electret media and nanofiber layer. Sep Purif Technol 198:137–145

    Article  CAS  Google Scholar 

  6. Thomas D, Charvet A, Monnier NB, Christophe J, Collin A (2017) 1—An introduction to aerosols, aerosol filtration. Elsevier, New York, pp 1–30. ISBN 9781785482151

  7. Ruzer L, Harley N (eds) (2013) Aerosols handbook. CRC Press, Boca Raton

    Google Scholar 

  8. White P, Smith S (eds) (1964) High-efficiency air filtration. Butterworths, London

    Google Scholar 

  9. Petryanov IV, Kozlov VI, Basmanov PI, Ogorodnikov BI (1968) PF fibrous filtering materials. Znaniye, Moscow

    Google Scholar 

  10. Agranovski I (2010) Aerosols—science and technology. Wiley. https://doi.org/10.1002/9783527630134

  11. Petryanov IV, Koshcheev VS, Basmanov PI et al (1984) Lepestok light respirators. Nauka, Moscow (in Russian)

    Google Scholar 

  12. Druzhinin EA (2007) Production and properties of Petryanov filtering materials made of ultrathin polymeric fibers. Izdat, Moscow

    Google Scholar 

  13. Basmanov PI, Kirichenko VN, Filatov YN, Yurov YL (2003) High-efficiency removal of aerosols from gases using Petryanov filters. Nauka, Moscow

    Google Scholar 

  14. Mostafa YAM, Vasyanovich M, Zhukovsky M, Zaitceva N (2015) Calibration system for radon EEC measurements. Radiat Prot Dosim 164(4):587–590. https://doi.org/10.1093/rpd/ncv316

    Article  CAS  Google Scholar 

  15. Vasyanovich M, Mostafa MYA, Zhukovsky M (2017) Ultrafine aerosol influence on the sampling by cascade impactor. Radiat Prot Dosim 177(1–2):49–52

    Article  CAS  Google Scholar 

  16. Khalaf HNB, Mostafa MYA, Zhukovsky M (2018) Radiometric efficiency of analytical filters at different physical conditions. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6347-6

    Article  Google Scholar 

  17. Mostafa Y, Mohamed A, Abd El-hady M, Moustafa M, Nazmy H (2015) Effect of indoor activity size distribution of 222Rn progeny in-depth dose estimation. Appl Radiat Isot 97:34–39

    Article  CAS  Google Scholar 

  18. Yuness M, Mohamed A, Nazmy H et al (2016) Indoor activity size distribution of the short-lived radon progeny. Stoch Environ Res Risk Assess 30:167. https://doi.org/10.1007/s00477-015-1057-x

    Article  Google Scholar 

  19. Rogozina M, Zhukovsky M, Ekidin A, Vasyanovich M (2014) Thoron progeny size distribution in monazite storage facility. Radiat Prot Dosim 162(1–2):10–13

    Article  CAS  Google Scholar 

  20. Zhukovsky M, Rogozina M, Suponkina A (2014) Size distribution of radon decay products in the range 0.1–10 nm. Radiat Prot Dosim 160(1–3):192–195

    Article  CAS  Google Scholar 

  21. Nazmy H, Mostafa MYA, Zhukovsky M (2018) Particle size distribution of E-cigarette aerosols in indoor air. J Radiat Nucl Appl 3(2):111–117

    Article  Google Scholar 

  22. Khalaf HN, Mostafa MYA, Vasyanovich M, Zhukovsky M (2019) Comparison of radioactive aerosol size distributions (activity, number, mass, and surface area). Appl Radiat Isot 145:95–100

    Article  CAS  PubMed  Google Scholar 

  23. Cheng YS, Yeh HC (1980) Theory of screen type diffusion battery. J Aerosol Sci 11:313–319

    Article  CAS  Google Scholar 

  24. Nazaroff WW (1980) An improved technique for measuring working level of radon daughters in residences. Health Phys 45:509–523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyam Nazmy Bader Khalaf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, H.N.B., Mostafa, M.Y.A. & Zhukovsky, M. Radioactive aerosol permeability through Russian radiometric analytical (PF) filters. J Radioanal Nucl Chem 319, 1283–1289 (2019). https://doi.org/10.1007/s10967-019-06421-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06421-z

Keywords

Navigation