Skip to main content
Log in

Prostate tumor therapy advances in nuclear medicine: green nanotechnology toward the design of tumor specific radioactive gold nanoparticles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We report herein an innovative approach to prostate tumor therapy using tumor specific radioactive gold nanoparticles (198Au) functionalized with Mangiferin (MGF). Production and full characterization of MGF-198AuNPs are described. In vivo therapeutic efficacy of MGF-198AuNPs, through intratumoral delivery, in SCID mice bearing prostate tumor xenografts are described. Singular doses of the nano-radiopharmaceutical (MGF-198AuNPs) resulted in over 85% reduction of tumor volume as compared to untreated control groups. The excellent anti-tumor efficacy of MGF-198AuNPs are attributed to the retention of over 90% of the injected dose within tumors for long periods of time. The retention of MGF-198AuNPs is also rationalized in terms of the higher tumor metabolism of glucose which is present in the xanthanoid functionality of MGF. Limited/no lymphatic drainage of MGF-198AuNPs to various non-target organs is an attractive feature presenting realistic scope for the clinical translation of MGF-198AuNPs in for treating prostate cancers in human patients. The comparative analysis of MGF-198AuNPs with other radioactive gold nanoparticles, functionalized either with epigallocatechin gallate or the Gum Arabic, has revealed significantly superior tumoricidal characteristics of MGF-198AuNPs, thus corroborating the importance of the tumor-avid glucose motif of MGF. Oncological implications of MGF-198AuNPs as a new therapeutic agent for treating prostate and various solid tumors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Travis LB (2002) Therapy-associated solid tumors. Acta Oncol 41(4):323–333

    Article  Google Scholar 

  2. Trikalinos TA, Terasawa T, Ip S, Raman G, Lau J (2009) Particle beam radiation therapies for cancer. Rockville (MD). AHRQ Comparative Effectiveness Technical Briefs, Agency for Healthcare Research and Quality (US)

  3. Leroi N, Lallemand F, Coucke P, Noel A, Martinive P (2016) Impacts of ionizing radiation on the different compartments of the tumor microenvironment. Front Pharmacol 7:78

    Article  Google Scholar 

  4. Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9(6):1957–1971

    CAS  PubMed  Google Scholar 

  5. Liu S, Liu J, Ma Q et al (2016) Solid tumor therapy by selectively targeting stromal endothelial cells. Proc Nat Acad Sci USA 113(28):E4079–E4087

    Article  CAS  Google Scholar 

  6. Orecchia R, Zurlo A, Loasses A et al (1998) Particle beam therapy (hadrontherapy): basis for interest and clinical experience. Eur J Cancer 34(4):459–468

    Article  CAS  Google Scholar 

  7. Mukerji R, Schaal J, Li X et al (2016) Spatiotemporally photoradiation-controlled intratumoral depot for combination of brachytherapy and photodynamic therapy for solid tumor. Biomaterials 79:79–87

    Article  CAS  Google Scholar 

  8. Sano K, Kanada Y, Kanazaki K, Ding N, Ono M, Saji H (2017) Brachytherapy with intratumoral injections of radiometal-labeled polymers that thermo-responsively self-aggregate in tumor tissues. J Nucl Med 58:1380–1385

    Article  CAS  Google Scholar 

  9. D’Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974

    Article  Google Scholar 

  10. Zamboglou N, Tselis N, Baltas D et al (2013) High-dose-rate interstitial brachytherapy as monotherapy for clinically localized prostate cancer: treatment evolution and mature results. Int J Radiat Oncol 85(3):672–678

    Article  Google Scholar 

  11. Yoshioka Y, Nose T, Yoshida K et al (2000) High-dose-rate interstitial brachytherapy as a monotherapy for localized prostate cancer: treatment description and preliminary results of a phase I/II clinical trial. Int J Radiat Oncol 48(3):675–681

    Article  CAS  Google Scholar 

  12. Dolan J, Lia Z, Williamson JF (2006) Monte Carlo and experimental dosimetry of an 1251 brachytherapy seed. Med Phys 33(12):4675–4684

    Article  CAS  Google Scholar 

  13. Lai P, Lechtman E, Mashouf S, Pignol JP, Reilly RM (2016) Depot system for controlled release of gold nanoparticles with precise intratumoral placement by permanent brachytherapy seed implantation (PSI) techniques. Int J Pharmaceut 515(1–2):729–739

    Article  CAS  Google Scholar 

  14. Stoll A, van Oepen A, Friebe M (2016) Intraoperative delivery of cell-killing boost radiation—a review of current and future methods. Minim Invasiv Ther 25(4):176–187

    Article  Google Scholar 

  15. Shah S, Holzwanger E, Khwaja R et al (2016) A single-site retrospective, nonrandomized study of accelerated partial breast irradiation brachytherapy for early-stage breast cancer treatment to evaluate local tumor control, cosmetic outcome, and toxicities. Technol Cancer Res Treat 15(5):645–650

    Article  Google Scholar 

  16. Major T, Stelczer G, Pesznyak C, Meszaros N, Polgar C (2017) Multicatheter interstitial brachytherapy versus intensity modulated external beam therapy for accelerated partial breast irradiation: a comparative treatment planning study with respect to dosimetry of organs at risk. Radiother Oncol 122(1):17–23

    Article  Google Scholar 

  17. Barbarite E, Sick JT, Berchmans E et al (2017) The role of brachytherapy in the treatment of glioblastoma multiforme. Neurosurg Rev 40(2):195–211

    Article  Google Scholar 

  18. Price JG, Stone NN, Stock RG (2013) Predictive factors and management of rectal bleeding side effects following prostate cancer brachytherapy. Int J Radiat Oncol Biol Phys 86(5):842–847

    Article  Google Scholar 

  19. Lee BH, Kibel AS, Ciezki JP et al (2015) Are biochemical recurrence outcomes similar after radical prostatectomy and radiation therapy? Analysis of prostate cancer-specific mortality by nomogram-predicted risks of biochemical recurrence. Eur Urol 67(2):204–209

    Article  Google Scholar 

  20. Wang J, Lu Z, Gao Y, Wientjes MG, Au JL (2011) Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. Nanomed (Lond) 6(9):1605–1620

    Article  CAS  Google Scholar 

  21. Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian SM, Bazargan M (2014) Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng 8:12

    Article  Google Scholar 

  22. Jang SH, Wientjes MG, Lu D, Au JL (2003) Drug delivery and transport to solid tumors. Pharm Res 20(9):1337–1350

    Article  CAS  Google Scholar 

  23. Tselis N, Hoskin P, Baltas D et al (2017) High dose rate brachytherapy as monotherapy for localised prostate cancer: review of the current status. Clin Oncol (R Coll Radiol) 28:401–411

    Article  Google Scholar 

  24. Park DS (2012) Current status of brachytherapy for prostate cancer. Korean J Urol 53(11):743–749

    Article  Google Scholar 

  25. Yoshioka Y, Suzuki O, Otani Y, Yoshida K, Nose T, Ogawa K (2014) High-dose-rate brachytherapy as monotherapy for prostate cancer: technique, rationale and perspective. J Contemp Brachyther 6(1):91–98

    Article  Google Scholar 

  26. Chanda N, Kan P, Watkinson LD et al (2010) Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 6(2):201–209

    Article  CAS  Google Scholar 

  27. Fent GM, Casteel SW, Kim DY et al (2009) Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed-Nanotechnol 5(2):128–135

    Article  CAS  Google Scholar 

  28. Katti KV, Kannan R, Katti K et al (2006) Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys 56:D23–D34

    Article  CAS  Google Scholar 

  29. Nune SK, Chanda N, Shukla R et al (2009) Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 19(19):2912–2920

    Article  CAS  Google Scholar 

  30. Shukla R, Chanda N, Zambre A et al (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci USA 109(31):12426–12431

    Article  CAS  Google Scholar 

  31. Al-Yasiri AY, Khoobchandani M, Cutler CS et al (2017) Mangiferin functionalized radioactive gold nanoparticles (MGF-(198)AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans 46(42):14561–14571

    Article  CAS  Google Scholar 

  32. Shukla R, Zambre A, Chanda N et al (2011) Clinical translation of radioactive gold nanoparticle-based nanoceutical (EGCG-(AuNP)-198Au) for prostate tumor therapy. J Labelled Compd Rad 54:S89

    Google Scholar 

  33. Kannan R, Zambre A, Chanda N et al (2011) Functionalized radioactive gold nanoparticles in tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:42–51

    Article  Google Scholar 

  34. Axiak-Bechtel AM, Upendran A, Lattimer JC et al (2014) Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomed 9:5001–5011

    Article  Google Scholar 

  35. Berning DE, Katti KV, Barnes CL, Volkert WA (1999) Chemical and biomedical motifs of the reactions of hydroxymethylphosphines with amines, amino acids, and model peptides. J Am Chem Soc 121(8):1658–1664

    Article  CAS  Google Scholar 

  36. Boote E, Fent G, Kattumuri V et al (2010) Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using X-ray computed tomography. Acad Radiol 17(4):410–417

    Article  Google Scholar 

  37. Chanda N, Kattumuri V, Shukla R et al (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 107(19):8760–8765

    Article  CAS  Google Scholar 

  38. Chanda N, Shukla R, Katti KV, Kannan R (2009) Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett 9(5):1798–1805

    Article  CAS  Google Scholar 

  39. Kannan R, Rahing V, Cutler C et al (2006) Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. J Am Chem Soc 128(35):11342–11343

    Article  CAS  Google Scholar 

  40. Katti K, Chanda N, Shukla R et al (2009) Green Nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotechnol Biomed 1(1):B39–B52

    Article  Google Scholar 

  41. Kattumuri V, Katti K, Bhaskaran S et al (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341

    Article  CAS  Google Scholar 

  42. Khoobchandani M, Katti K, Maxwell A, Fay WP, Katti KV (2016) Laminin receptor-avid nanotherapeutic EGCg-AuNPs as a potential alternative therapeutic approach to prevent restenosis. Int J Mol Sci 17(3):216

    Article  Google Scholar 

  43. Khoobchandani M, Zambre A, Katti K, Lin CH, Katti KV (2013) Green nanotechnology from brassicaceae: development of broccoli phytochemicals–encapsulated gold nanoparticles and their applications in nanomedicine. Int J Green Nanotechnol 1:1–15

    Article  Google Scholar 

  44. Shukla R, Nune SK, Chanda N et al (2008) Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 4(9):1425–1436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Non-radioactive Mangiferin gold nanoparticles were prepared and characterized by Dr. M. Khoobchandani and Kavita Katti, radioactive gold nanoparticles work reported in this publication is the PhD dissertation work of Dr. Al-Yasiri. Velaphi Thipe carried out quality control measurmenets of MGF-AuNPs. Dr. Loyalka and Dr. Al-Yasiri thank the Ministry of Higher Education and Scientific Research of Iraq and the Nuclear Science and Engineering Institute (NSEI) at the University of Missouri, for financial support during the course of doctoral work of Amal Y. Al-Yasiri. We (KVK) thank funds from the Mizzou advantage program and the Institute of Green Nanotechnology, Office of Research, Chancellor’s Excellence Program, University of Missouri, USA, for supporting the interdisciplinary research. KVK and ABL thank the International Atomic Energy Agency (IAEA), Vienna for international collaborations. KVK and ABL thank funds from the Brazilian Ministry of Science and Technology for funds through the ‘Science Without Borders’ program (CNPq 401438/2014-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Katti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katti, K.V., Khoobchandani, M., Thipe, V.C. et al. Prostate tumor therapy advances in nuclear medicine: green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. J Radioanal Nucl Chem 318, 1737–1747 (2018). https://doi.org/10.1007/s10967-018-6320-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6320-4

Keywords

Navigation