Skip to main content
Log in

Developments in radioanalytics: from Geiger counters to single atom counting

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Progress in radioanalytical science, mainly in radiometrics and mass spectrometry technologies for ultra-sensitive analyses of radionuclides applied in natural sciences is shortly reviewed. While in the radiometrics sector the greatest developments have been made in underground Ge gamma-spectrometry, in the mass spectrometry sector the accelerator mass spectrometry had dominant position reaching the status of single atom counting and compound specific analysis for some long-lived radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geiger H, Müller W (1929) Zeitschrift für Physik 30:489

    CAS  Google Scholar 

  2. Libby WF (1934) Phys Rev 46:196–204

    CAS  Google Scholar 

  3. Libby WF, Lee DD (1939) Phys Rev 55:245–251

    CAS  Google Scholar 

  4. Kurie FND (1934) Phys Rev 45:904–905

    CAS  Google Scholar 

  5. Anderson EC et al (1947) Science 105:576–577

    CAS  PubMed  Google Scholar 

  6. Blackett PMS, Occhialini GPS (1933) Proc R Soc A 139:699–726

    CAS  Google Scholar 

  7. Anderson EC, Libby WF (1951) Phys Rev 81:64–69

    CAS  Google Scholar 

  8. Libby WF (1955) Radiocarbon dating. University of Chicago Press, Chicago

    Google Scholar 

  9. Curran SC, Angus J, Cockroft AL (1949) Phil Mag 40:36–52

    CAS  Google Scholar 

  10. de Vries H, Barendsen GW (1952) Physica 18:652–659

    Google Scholar 

  11. Suess HE (1954) Science 120:5–7

    CAS  PubMed  Google Scholar 

  12. Burke WH Jr, Meinschein WG (1955) Rev Sci Instrum 26:1137–1140

    CAS  Google Scholar 

  13. Faltings V (1952) Naturwissenschaften 39:378–379

    CAS  Google Scholar 

  14. Houtermans FG, Oeschger H (1955) Helv Phys Acta 28:464–466

    CAS  Google Scholar 

  15. Drever RW, Moljk A, Curran SC (1957) Nuclear Instruments 1:41–45

    CAS  Google Scholar 

  16. Olsson IV (1957) Arkiv for Physik 13:37–60

    CAS  Google Scholar 

  17. Nydal R (1962) Rev Sci Instrum 33:1313–1320

    CAS  Google Scholar 

  18. Povinec P, Šáro Š, Chudý M, Šeliga M (1968) Int J Appl Radiat Isot 19:877–881

    CAS  PubMed  Google Scholar 

  19. Oeschger H, Loosli HH (1977) In: Povinec P, Usačev S (eds) Proceedings low-radioactivity measurements and applications. SPN, Bratislava

  20. Povinec P (1978) Nucl Instrum Methods 156:441–446

    CAS  Google Scholar 

  21. Povinec P (1979) Nucl Instrum Methods 163:363–368

    CAS  Google Scholar 

  22. Oeschger H (1963) In: Radioactive Dating. IAEA, Vienna

    Google Scholar 

  23. Suess HE (1965) J Geophys Res 70:5937–5952

    CAS  Google Scholar 

  24. Damon PE, Long A, Grey DC (1966) J Geophys Res 71:1055–1063

    CAS  Google Scholar 

  25. Stuiver M (1978) Science 202:881–883

    CAS  PubMed  Google Scholar 

  26. Schoch H, Bruns M, Münnich KO, Münnich M (1980) Radiocarbon 22:442–447

    CAS  Google Scholar 

  27. Tans PP, de Jong AFM, Mook WG, Hut G (1982) In: Povinec P (ed) Proc Low-Level Counting. Bratislava, Veda

    Google Scholar 

  28. Povinec P (1992) Radiocarbon 34:406–413

    CAS  Google Scholar 

  29. Loosli HH, Möll M, Oeschger H, Scotterer U (1986) Nucl Instrum Methods Phys Res B 17:402–405

    Google Scholar 

  30. Povinec PP, Betti M, Jull AJT, Vojtyla P (2008) Acta Phys Slov 58:1–154

    CAS  Google Scholar 

  31. Davis R Jr, Harmer DS, Hoffman KC (1968) Phy Rev Lett 20:1205–1209

    CAS  Google Scholar 

  32. Geyh MA (1967) In: Radioactive dating and methods of low-level counting. IAEA, Vienna

  33. Loosli HH, Oeschger H (1982). In: Povinec P (ed) Proceedings of low-level counting. Veda, Bratislava

  34. Currie LA, Gerlach RW, Klouda GA, Ruegg FC, Tompkins GB (1983) Radiocarbon 25:553–564

    CAS  Google Scholar 

  35. Hut G, Keyser J, Wijma S (1983) Radiocarbon 25:547–552

    CAS  Google Scholar 

  36. Srdoč D, Obelič B, Horvatinčič N (1983) Radiocarbon 25:485–492

    Google Scholar 

  37. Povinec P (1981) Intern J Appl Rad Isot 32:729–732

    CAS  Google Scholar 

  38. Krajcar-Bronic I, Obelic B, Srdoc D (1986) Nucl Instrum Methods 17:498–500

    Google Scholar 

  39. Povinec P (1972) Nucl Instrum Methods 101:613–614

    CAS  Google Scholar 

  40. Povinec P (1981) Nucl Energy 27:207–209

    CAS  Google Scholar 

  41. Szarka J, Povinec P (1979) Nucl Instrum Methods 164:463–468

    CAS  Google Scholar 

  42. Kubinec P, Masarik J, Melo I, Povinec P (1986) Nucl Instrum Methods B17:454–457

    CAS  Google Scholar 

  43. Kuzminov VV et al (1986) Nucl Instrum Methods B17:452–453

    CAS  Google Scholar 

  44. Bellotti E et al (1992) Nucl Instrum Methods A323:125–134

    CAS  Google Scholar 

  45. Povinec P et al (1990) Nucl Instrum Methods A293:562–568

    CAS  Google Scholar 

  46. Martín-Albo J et al (2016) JHEP 05:159–175

    Google Scholar 

  47. Chinowsky W et al (2007) Nucl Instrum Methods A580:829–835

    Google Scholar 

  48. Auger M et al (2012) Phys Rev Lett 109:032505

    CAS  PubMed  Google Scholar 

  49. Arnold R et al (2010) Eur Phys J C 70:927–943

    CAS  Google Scholar 

  50. Burchuladze AA, Pagava SV, Povinec P, Togonidze GI, Usačev S (1980) Nature 287:320–322

    CAS  Google Scholar 

  51. Polach H et al (1988) Nucl Geophys 2:75–79

    CAS  Google Scholar 

  52. Long A, Kalin RM (1992) In: Povinec P (ed) Proceedings of rare nuclear processes. Veda, Bratislava

  53. Pearson GW (1979) Radiocarbon 21:1–21

    CAS  Google Scholar 

  54. McCormac FG (1992) Radiocarbon 34:37–45

    CAS  Google Scholar 

  55. Arpesella C et al (2008) Phys Rev Lett 101:091302

    CAS  PubMed  Google Scholar 

  56. Breier R, Hamajima Y, Povinec PP (2016) J Radioanal Nucl Chem 307:1957–1960

    CAS  Google Scholar 

  57. Breier R, Laubenstein M, Povinec PP (2017) Appl Radiat Isot 126:188–190

    CAS  PubMed  Google Scholar 

  58. Breier R et al (2017) J Environ Radioact 190–191:134–140

    Google Scholar 

  59. Ross P (2008) In: Povinec PP (ed) Radionuclides in the environment. Elsevier, Amsterdam

    Google Scholar 

  60. Nisi S et al (2009) Appl Radiat Isot 67:828–832

    CAS  PubMed  Google Scholar 

  61. Wyse E, Lee SH, La Rosa J, Povinec PP, de Mora SJ (2001) J Anal At Spectrom 16:1107–1110

    CAS  Google Scholar 

  62. Oliphant ML, Harteck P, Rutherford E (1934) Nature 133:413

    CAS  Google Scholar 

  63. Alvarez LW, Cornog R (1939) Phys Rev 56:613

    CAS  Google Scholar 

  64. Muller RA, Alvarez LW, Holley WR, Stephenson ER (1977) Science 196:521–552

    CAS  PubMed  Google Scholar 

  65. Schwartzschild AZ, Thieberger P, Cumming JB (1977) Bull Am Phys Soc 22:94

    Google Scholar 

  66. Muller RA (1977) Science 196:489–494

    CAS  PubMed  Google Scholar 

  67. Nelson DE, Korteling RG, Stott WR (1977) Science 198:507–508

    CAS  PubMed  Google Scholar 

  68. Purser KH et al (1977) Rev Phys Appl 12:1487–1492

    CAS  Google Scholar 

  69. Kutschera W (2005) Intern J Mass Spec 242:145–160

    CAS  Google Scholar 

  70. Collon P et al (2000) Earth Planet Sci Lett 182:103–113

    CAS  Google Scholar 

  71. Synal H-A, Jacob S, Suter M (2000) Nucl Instrum Methods Phys Res B 172:1–7

    CAS  Google Scholar 

  72. Skog G (2007) Nucl Instrum Methods Phys Res B 259:1–6

    CAS  Google Scholar 

  73. Suter M (2007) Nucl Instrum Methods Phys Res B 259:165–172

    CAS  Google Scholar 

  74. Synal H-A, Stocker M, Suter M (2007) Nucl Instrum Methods Phys Res B 259:7–13

    CAS  Google Scholar 

  75. Fifield LK, Synal H-A, Suter M (2004) Nucl Instrum Methods B 223–224:802–806

    Google Scholar 

  76. Jull AJT et al (2008) In: Povinec PP (ed) Radionuclides in the environment. Elsevier, Amsterdam

    Google Scholar 

  77. Fifield LK (2008) In: Povinec PP (ed) Radionuclides in the environment. Elsevier, Amsterdam

    Google Scholar 

  78. Synal H-A (2013) Int J Mass Spectrom 349–350:192–202

    Google Scholar 

  79. Freeman SPHT, Shanks RP, Donzel X, Gaubert G (2015) Nucl Instrum Methods Phys Res B 36:229–232

    Google Scholar 

  80. Shanks RP, Freeman SPHT (2015) Nucl Instrum Methods Phys Res B 361:307–310

    CAS  Google Scholar 

  81. Famulok N et al (2015) Nucl Instrum Meth Phys Res B 361:193–196

    CAS  Google Scholar 

  82. Povinec PP (2017) Nucl Instrum Methods Phys Res A 845:398–403

    CAS  Google Scholar 

  83. Povinec PP (2017) Appl Rad Isot 126:26–30

    CAS  Google Scholar 

  84. Knee K et al (2004) Phys Rev Lett 93:171103

    Google Scholar 

  85. Walner A et al (2016) Nature 532:69–72

    Google Scholar 

  86. Russell BC, Croudace IW, Warwick PE (2015) Anal Chim Acta 890:7–20

    CAS  PubMed  Google Scholar 

  87. Snow MS, Snyder DC (2016) J Environ Radioact 151:258–263

    CAS  PubMed  Google Scholar 

  88. Yang G, Tazoe H, Yamada M (2016) Sci Rep 6:24119

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shibahara Y et al (2014) J Nucl Sci Technol 51:575–579

    CAS  Google Scholar 

  90. MacDonald C et al (2014) Rapid Com. Mass Spec https://doi.org/10.1002/rcm.7083

  91. MacDonald C et al (2016) Phys Rev C 93:014310

    Google Scholar 

  92. Yin X et al (2017) Radiocarbon 59:967–971

    CAS  Google Scholar 

  93. Loaiza P et al (2017) Appl Radiat Isot 123:54–59

    CAS  PubMed  Google Scholar 

  94. Barabash AS et al (2017) JINST 12:P06002

    Google Scholar 

  95. Palušová V, Breier R, Povinec PP (2018) J Radioanal Nucl Chem (in print)

  96. Laubenstein M et al (2004) Appl Radiat Isot 61:167–172

    CAS  PubMed  Google Scholar 

  97. Povinec PP (2004) In: Livingston HD (ed) Marine Radioactiv- ity. Elsevier, New York

    Google Scholar 

  98. Povinec PP, Scholten J, Erikson M, Betti M (2012) In: L’An- nunziata MF (ed) Handbook of radioactivity analysis. Elsevier, New York

  99. Povinec PP, Comanducci JF, Levy-Palomo I (2004) Appl Radiat Isot 61:85–93

    CAS  PubMed  Google Scholar 

  100. Povinec PP, Comanducci JF, Levy-Palomo I (2005) J Radioanal Nucl Chem 263:441–445

    CAS  Google Scholar 

  101. Komura K, Hamajima Y (2004) Appl Radiat Isot 61:185–190

    CAS  PubMed  Google Scholar 

  102. Aoyama M, Povinec PP, Sanchez-Cabeza JA (2011) Prog Oceanog 89:1–6

    Google Scholar 

  103. Aoyama M et al (2011) Prog Oceanogr 89:7–15

    Google Scholar 

  104. Povinec PP et al (2011) Prog Oceanogr 89:17–30

    Google Scholar 

  105. Sanchez-Cabeza JA et al (2011) Prog Oceanogr 89:31–37

    Google Scholar 

  106. Kumamoto Y et al (2011) Prog Oceanog 89:49–60

    Google Scholar 

  107. Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. Elsevier, New York

    Google Scholar 

  108. Povinec PP et al (2013) Biogeosciences 10:5481–5496

    Google Scholar 

  109. Hou X et al (2013) Environ Sci Technol 47:3091–3098

    CAS  PubMed  Google Scholar 

  110. Povinec PP et al (2017) J Environ Radioact 166:56–66

    CAS  PubMed  Google Scholar 

  111. Kaizer J et al (2018) J Environ Radioact 184–185:83–94

    PubMed  Google Scholar 

  112. Povine PP et al (2013) Appl Radiat Isot 81:383–392

    Google Scholar 

  113. Povine PP et al (2013) J Radioanal Nucl Chem 295:1171–1176

    Google Scholar 

  114. Povine PP, Hirose K (2015) Sci Rep 5:9016. https://doi.org/10.1038/srep09016

    Article  CAS  Google Scholar 

  115. Povinec PP et al (2003) Deep-See Res II 50:2607–2638

    CAS  Google Scholar 

  116. Povinec PP et al (2005) J Environ Radioact 81:63–87

    CAS  PubMed  Google Scholar 

  117. Povinec PP, et al (2006) J Environ Radioact 76:113–137 (2006)

  118. Aramaki T, Mizushima T, Kuji T, Povinec PP, Togawa O (2001) Radiocarbon 43:857–867

    CAS  Google Scholar 

  119. Kumamoto Y et al (2015) J Environ Radioact 140:114–122

    CAS  PubMed  Google Scholar 

  120. Povinec PP, Litherland AE, von Reden KF (2009) Radiocarbon 51:45–78

    CAS  Google Scholar 

  121. Lujaniene G et al (2015) Radiocarbon 57:481–492

    CAS  Google Scholar 

  122. Lujaniene G et al (2017) Appl Rad Isot 126:49–53

    CAS  Google Scholar 

  123. Lujaniene G et al (2018) Radiocarbon (in print)

  124. Povinec PP et al (2013) Radiocarbon 55:1017–1028

    CAS  Google Scholar 

  125. Ženišová Z et al (2015) Hydrol Res 46:929–942

    Google Scholar 

Download references

Acknowledgements

First, I would like to thank Prof. Zsolt Révay, the Chief Editor of Journal of Radioanalytical and Nuclear Chemistry, for his invitation to write this review at the occasion of the 50th anniversary of the Journal. The Journal, originally founded by Prof. Tibor Braun (in collaboration with the late Prof. Juraj Tölgyessy from Bratislava), has become a leading and comprehensive printed (and later also Internet) medium for radioanalytical science and technology, with important impacts on new developments and their applications almost in all experimental research fields. Therefore, our appreciation goes to all these scientists for their great vision and continuing support of radioanalytical science.

The development of radioanalytical methods focusing on radionuclide analyses was an international undertaking and this review can only mention a few of the contributions. Many colleagues participated in various stages of these developments, and even more on applications of these methods. Personally, I would like therefore to acknowledge at least some of them with whom I was working on joint projects. I am indebted to colleagues and graduated students in my CENTA team at the Department of Nuclear Physics and Biophysics (R. Breier, M. Ješkovský, J. Kaizer, I. Kontul’, V. Palušová, J. Pánik,, M. Richtáriková, J. Staníček, J. Szarka, A. Šivo, J. Zeman) for fruitful collaboration on recent developments of radiometrics, accelerator mass spectrometry and ion beam analysis technologies, as well as to senior staff of the Faculty of Mathematics, Physics and Informatics (K. Holý, P. Kúš, J. Masarik, V. Porubčan, I. Sýkora, S. Tokár, J. Tóth) for continuing collaboration and support.

It has been great pleasure during and after my stay at the International Atomic Energy Agency’s Marine Environment Laboratories in Monaco to work on various aspects of radioanalytical developments (including separation radiochemistry, radiometrics and mass spectrometry methods, development of the CAVE underground laboratory in Monaco, etc.) with IAEA staff members (M.S. Baxter, J.-F. Comanducci, S.W. Fowler, J. Gastaud, L. Huynh-Ngoc, J. La Rosa, S.- H. Lee, I. Levy, L. Liong Wee Kwong, H.D. Livingston, J.C. Miquel, B. Oregioni, I. Osvath, M.K. Pham, E.J. Wyse, and others), but also with numerous visitors working on long-term contracts (T. Honda, Y. Ikeuchi, T. Ito, M. Nakano, O. Togawa, and others).

It has also been a great privilege to work with my friends, distinguished scientists from all over the world, on developments of radioanalytical technologies (to mention at least the leaders of the groups participating in joint projects): M. Aoyama (Fukushima), L. Benedik (Ljubljana), M. Betti (Karlsruhe), W.C. Burnett (Tallahassee), J.R. Chisholm (Monaco), L.K. Fifield (Canberra), Y. Hamajima (Kanazawa), K. Hirose (Tokyo), G.-H. Hong (Seoul), M.A.C. Hotchkis (Sydney), X. Hou (Riso), Y. Igarashi (Tsukuba), Y. Ikeuchi (Chiba), K.G.W. Inn (Gaithersburg), T. Ito (Tokai), P. Jean-Baptist (Gif-sur-Yvette), J. John (Prague), A.J.T. Jull (Tucson), W. E. Kieser (Toronto, Ottawa), J. Kučera (Prague), Y. Kumamoto (Yokosuka), M. Laubenstein (Gran Sasso), H.-C. Li (Taipei), G. Lujaniené (Vilnius), M. Molnár (Debrecen), U. Morgenstern (Lower Hutt), M. Nakano (Tokai), H. Nies (Hamburg), S. Nisi (Gran Sasso), S.V. Pagava (Tbilisi), L. Palcsu (Debrecen), P. Steier (Vienna), I. Svetlik (Prague), F. Terrasi (Caserta), O. Togawa (Tokai), Z. Top (Miami) and with more than two hundred colleagues participating in international underground physics projects NEMO-3, SuperNEMO, LEGEND and EURECA.

The developments of ultra-sensitive radioanalytical technologies and their applications at the Comenius University in Bratislava have recently been supported by the EU Research and Development Operational Program funded by the ERDF (Projects 26240120012, 26240120026 and 26240220004), by the International Atomic Energy Agency (Projects SLR 0/008, SLR 0/009, SLR1001), by the Slovak Research and Development Agency (Projects APVV 15-0576 and APVV 16-0148) and by the VEGA Scientific Granting Agency of Slovakia (Projects 1/0891/17 and 1/0783/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel P. Povinec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povinec, P.P. Developments in radioanalytics: from Geiger counters to single atom counting. J Radioanal Nucl Chem 318, 1573–1585 (2018). https://doi.org/10.1007/s10967-018-6248-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6248-8

Keywords

Navigation