Skip to main content
Log in

Historical evolution of heavy metal pollution and recent records in Lake Karagöl sediment cores using 210Pb models, western Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In present study, Activity concentrations of 210Pb (Polonium-210) were indirectly determined by utilizing alpha spectrometry. Sediment chronology was obtained by using 210Pb (CF; CS, CRS, CIC) models and corrected via residence time of the 210Pb in each core for Lake Karagöl. Average residence times of the 210Pb is 6.5, 4.8, 5.3 months and average sedimentation rate is 0.366, 0.322, 0.237 cm year−1 in S-1, S-2, S-3 stations respectively. According to atmospheric 210Pb flux (24 mBq cm−2 year−1) and 210Po/210Pb ratio values, we determine the soil erosion in the lake catchment. The ranges of ratios in the sediment cores obtained from Lake Karagöl are 1.4–1.3, 1.5–1.2, 1.3–1.1 in S-1, S-2, S-3 stations respectively. In terms of Enrichment Factor, heavy metal concentrations are lower than the antropogenic values. So we can say that the elements originate from the continental supply. In other words there is not metal pollution in the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldberg ED (1963) Geochronology with Pb-210. In: Proceedings of a symposium of radioactive dating. International Atomic Energy Agency, Vienna, pp 121–131

  2. Krishnaswami LD, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  Google Scholar 

  3. Koide M, Soutar A, Goldberg ED (1972) Marine geochronology with 210Pb. Earth Planet Sci Lett 14:442–446

    Article  CAS  Google Scholar 

  4. Robbins JA, Krezosky JR, Mozley SC (1977) Radioactivity in sediments of the Great Lakes: post-depositional redistribution by deposit-feeding organisms. Earth Planet Sci Lett 36:325–333

    Article  CAS  Google Scholar 

  5. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  CAS  Google Scholar 

  6. Oldfield F, Appleby PG, Battarbee RW (1978) Alternative 210Pb dating: results from the New Guinea Highlands and Lough Erne. Nature 271:339–342

    Article  CAS  Google Scholar 

  7. Liu J, Carroll JL, Lerche I (1991) A technique for disentangling temporal source and sediment variations from radioactive isotope measurements with depth. Nucl. Geophys. 5:31–45

    Google Scholar 

  8. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1. E-Publishing Inc., Springer, pp 171–203

    Chapter  Google Scholar 

  9. Benoit G, Rozan TF (2001) 210Pb and 137Cs dating methods in lakes: a retrospective study. J Peleolimnol 25:455–465

    Article  Google Scholar 

  10. Walling DE, He Q, Appleby PG (2003) Conversion models for use in soil-erosion, soil-redistribution and sedimentation investigations. In: Zapata F (ed) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Springer, New York, pp 111–164

    Chapter  Google Scholar 

  11. Tylmann W (2005) Lithological and geochemical record of antropogenic changes in recent sediments of a small and shallow lake (Lake Pusty Staw, northern Poland). J Paleolimnol 33:313–325

    Article  Google Scholar 

  12. Lubis AA (2006) Constant rate of supply (CRS) model for determination the sediment accumulation rates in the coastal area using 210Pb. J Coast Dev 10(1):9–18

    Google Scholar 

  13. Zaborska A, Carroll J, Papucci C, Pempkowiak J (2007) Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. J Environ Radioact 93:38–50

    Article  CAS  Google Scholar 

  14. Applby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene 18:83–93

    Article  Google Scholar 

  15. Kircher G (2011) 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models. J Environ Radioact 102:490–494

    Article  Google Scholar 

  16. Pittauerová D, Hettwig B, Fischer HW (2011) Pb-210 sediment chronology: focused on supported lead. Radioprotection 46(6):277–288

    Article  Google Scholar 

  17. Gui Z, Xue B, Yao S, Zhang F, Yi S (2012) Catchment erosion and trophic status changes over the past century as recorded in sediments from Wudalianchi Lake, the northernmost volcanic lake in China. Quat Int 282:163–170

    Article  Google Scholar 

  18. Sanches-cabeza JA, Ruiz-fernandez AC (2012) 210Pb sediment chronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200

    Article  Google Scholar 

  19. Tateda Y, Tsumune D, Tsubono T (2013) Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model. J Environ Radioact 124:1–12

    Article  CAS  Google Scholar 

  20. Boisson F, Miquel JC, Cotret O, Fowler SW (2001) 210Po and 210Pb cycling in an hydrothermal vent zone in the coastal Aegean Sea. Sci Total Environ 281:111–119

    Article  CAS  Google Scholar 

  21. Masque P, Sanches-Cabeza JA, Bruach JM, Palacios E, Canals M (2002) Balance and residence times of 210Pb and 210Po in surface waters of the Northwestern Mediterranean Sea. Cont Shelf Res 22:2127–2146

    Article  Google Scholar 

  22. Heussner S, Cherry R, Heyraud M (1990) 210Po and 210Pb in sediment trap particles on a Mediterranean continental margin. Cont Shelf Res 10(9–11):989–1004

    Article  Google Scholar 

  23. Radakovitch O, Cherry RD, Heyraud M, Heussner S (1997) Unusual 210Po/210Pb ratios in the surfacewater of the Gulf of Lions. Oceanol Acta 21:N-3

    Google Scholar 

  24. O’Reilly J, Vintró LL, Mitchell PI, Donohue I, Leira M, Hobbs W, Irvine K (2011) 210Pb-dating of a lake sediment core from Lough Carra (Co. Mayo, western Ireland): use of paleolimnological data for chronology validation below the 210Pb dating horizon. J Environ Radioact 102:495–499

    Article  Google Scholar 

  25. Sert I, Yener G, Ozel E, Pekcetinoz B, Eftelioglu M, Gorgun AU (2012) Estimation of sediment accumulation rates using naturally occuring 210Pb models in Gulbahce Bay, Aegean Sea, Turkey. J Environ Radioact 107:1–12

    Article  CAS  Google Scholar 

  26. Flynn WW (1968) The determination of low levels of Polonium-210 in environmental materials. Anal Chim Acta 43:221–227

    Article  CAS  Google Scholar 

  27. Bateman H (1910) Solution of a system of differential equations occurring in the theory of radioactive transformations. Proc Camb Philos Soc 15:423–427

    CAS  Google Scholar 

  28. Kumar US, Navada SV, Rao SM, Nachiappan RP, Kumar B, Krishnamoorthy TM, Jha SK, Shukla VK (1999) Determination of recent sedimentation rates and pattern in Lake Naini, India by 210Pb and 137Cs dating techniques. Appl Radiat Isot 51:97–105

    Article  CAS  Google Scholar 

  29. Diaz-asencio M, Alonso-Hernández CM, Balanos-Álvarez Y, Gómez-Batista M, Pinto V, Morabito R, Hernández-Albernas JI, Eriksson M, Sanchez-Cabeza JA (2009) One century sedimentary record of Hg and Pb pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar Pollut Bull 59:108–115

    Article  CAS  Google Scholar 

  30. Ridgway J, Breward N, Langston WJ, Lister R, Rees JG, Rowlatt SM (2003) Distinguishing between natural and anthropogenic sources of metals entering the Irish Sea. Appl Geochem 18:283–309

    Article  CAS  Google Scholar 

  31. Salomons W, Kertlik H, van Pagee H, Klomp R, Schreur A (1988) Behaviour and impact assessment of heavy metals in estuary and coastal zone. In: Seeliger U, de Lacerda LD, Patchineelam SR (eds) Metals in coastal environments of Latin America. Springer, New York, pp 159–198

    Google Scholar 

  32. Parsons MJ, Long DT, Yohn SS (2010) Assessing the natural recovery of a lake contaminated with Hg using estimated recovery rates determined by sediment chronologies. Appl Geochem 25:1676–1687

    Article  CAS  Google Scholar 

  33. Chatterjee M, Silva FEV, Sarkar SK (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  34. Zakir HM, Shikazono N, Otomo K (2008) Geochemical distribution of trace metals and assessment of anthropogenic pollution in sediments of Old Nakagawa River, Tokyo Japan. Am J Environ Sci 4(6):661–672

    Google Scholar 

  35. Cobelo-Garcia A, Prego R (2003) Land inputs, behavior and contamination levels of copper in a ria estuary (NW Spain). Mar Environ Res 56(3):403–422

    Article  CAS  Google Scholar 

  36. Liu WH, Zhao JZ, Quyang ZY (2005) Impact of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ Pollut 31:805–812

    CAS  Google Scholar 

  37. Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and surrounding coastal area South China. Environ Pollut 14:311–323

    Article  Google Scholar 

  38. Goher ME, Farhat HI, Abdo MH, Salem SG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egypt J Aquat Res 40:213–224

    Article  Google Scholar 

  39. Guo W, Huo S, Xi B, Zhang J, Wu F (2015) Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: distribution, bioavailability, and risk. Ecol Eng 81:243–255

    Article  Google Scholar 

  40. El-Amier YA, Elnaggar AA, El-Alfy MA (2016) Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake, Egypt. Egypt J Basic Appl Sci. https://doi.org/10.1016/j.ejbas.2016.09.005

  41. Din ZB (1992) Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Mar Pollut Bull 24(10):484–491

    Article  CAS  Google Scholar 

  42. Rubio B, Nombela M, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Article  CAS  Google Scholar 

  43. Shi Q, Leipe T, Rueckert P, Zhou D, Harff J (2010) Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River Estuary, Southern China. J Mar Syst 82(Supp 1):28–42

    Google Scholar 

  44. Qi S, Leipe T, Rueckert P, Di Z (2010) Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River Estuary, Southern China. J Mar Syst 82:28–42

    Article  Google Scholar 

  45. Szefer P, Szefer K, Glaspy GP, Pempkowiak J, Kaliszan R (1996) Heavy-metal pollution in surfical sediments from the southern Baltic Sea off Poland. J Environ Sci Health Part A A31(10):2723–2754

    CAS  Google Scholar 

  46. Szefer P, Glasby GP, Kunzendorf H, Görlich EA, Latka K, Ikuta K, Ali A (1998) The distribution of rare earth and other elements and the mineralogy of the iron oxyhydroxide phase in marine ferromanganese concretions from within Slupsk Furrow in the southern Baltic. Appl Geochem 13(3):305–312

    Article  CAS  Google Scholar 

  47. Nolting RF, Ramkema A, Everaats JM (1999) The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Cont Shelf Res 19:665–691

    Article  Google Scholar 

  48. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  49. Shumilin EN, Carriquiry JD, Vf Camacho-Ibar, Sapozhnikov YA (2002) Spatial and verticaldistributions of elements in sediments of the Colorado river delta and upper Gulf of California. Mar Chem 79:113–131

    Article  CAS  Google Scholar 

  50. Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, bells creek catchments, Southeast Queensland, Australia. Environ Int 29:935–948

    Article  Google Scholar 

  51. Glasby GP, Szefer P, Geldon J, Warzocha J (2004) Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci Total Environ 330:249–269

    Article  CAS  Google Scholar 

  52. Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  53. Sert I, Yaprak G, Ozel FE, Eftelioglu M (2016) Determination of the latest sediment accumulation rates and pattern by performing 210Pb models and 137Cs technique in the Lake Bafa, Mugla, Turkey. J Radioanal Nucl Chem 307:313–323

    Article  CAS  Google Scholar 

  54. Schettler G, Mingram J, Negendank JFW, Jiaqi L (2006) Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province). Part 2: a200-year record of atmospheric lead-210 flux variations and its palaeoclimatic implications. J Paleolimnol 35:271–288

    Article  Google Scholar 

  55. Ontiveros-Cuadras JF, Ruiz-Fernández AC, Sanches-Cabeza JA, Pérez-Bernal LH, Sericano JL, Preda M, Kwong LLW, Páez-Osuna F (2014) Trace element fluxes and natural potential risk from 210Pb-dated sediment cores in lacustrine environments at the Central Mexican Plateau. Sci Total Environ 468–469:677–687

    Article  Google Scholar 

  56. Begy RCs, Kovacs T, Veres D, Simon H (2016) Atmospheric flux, transport and mass balance of 210Pb and 137Cs radiotracers in different regions of Romania. Appl Radiat Isot 111:31–39

    Article  CAS  Google Scholar 

  57. Wan G, Chen J, Xu S, Wu F, Santschi PH (2005) Sudden enhancement of sedimentation flux of 210Pbex as an indicator of lake productivity as exemplified by Lake Chenghai. Sci China Ser D 48(4):484–495

    Article  CAS  Google Scholar 

  58. Appleby PG (2004) Environmental change and atmospheric contamination on Svalbard: sediment chronology. J Paleolimnol 31:433–443

    Article  Google Scholar 

  59. Strakhovenko VD, Shcherbov BL, Malikova IN, Vosel YuS (2010) The regularities of distribution of radionuclides and rare-earth elements in bottom sediments of Siberian lakes. Russ Geol Geophys 51:1167–1178

    Article  Google Scholar 

  60. Zhang E, Liu E, Shen J, Cao Y, Li Y (2012) One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China. J Environ Sci 24(7):1189–1196

    Article  CAS  Google Scholar 

  61. Mejjad N, Laissaoui A, El-Hammoumi O, Benmansour M, Benbrahim S, Bounouira H, Benkdad A, Bouthir FZ, Fekri A, Bounakhla M (2016) Sediment chronology and geochemical behavior of major rare earth elements in the Oualidia Lagoon in the western Marocco. J Radioanal Nucl Chem 309:1133–1143

    Article  CAS  Google Scholar 

  62. Persson BRR, Holmb E (2011) International Topical Meeting on Polonium and Radioactive Lead Isotopes Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact 102(5):420–429

    Article  CAS  Google Scholar 

  63. Krishnaswami S, Lal D (1978) Radionuclide limnochronology. In: Lerman A (ed) Lakes-chemistry geology physics. Springer, New York, pp 153–177

    Google Scholar 

  64. Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Article  CAS  Google Scholar 

  65. Garcia-Orellana J, Sanchez-Cabeza JA, Masque P, Àvilla A, Costa E, Loÿe-Pilot MD, Bruach-Menchén JM (2006) Atmospheric fluxes of 210Pb to the western Mediterranean Sea and Saharan dust influence. J Geophys Res 111:D15305

    Article  Google Scholar 

  66. Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact 102:500–513

    Article  CAS  Google Scholar 

  67. Al-Masri MS, Mamish S, Budeir Y (2002) The impact of phosphate loading activities on near marine environment: the Syrian coast. J Environ Radioact 58:35–44

    Article  CAS  Google Scholar 

  68. Michelutti N, Simonetti A, Briner JP, Funder S, Creaser RA, Wolfe AP (2009) Temporal trends of pollution Pb and other metals in east-central Baffin Island inferred from lake sediment geochemistry. Sci Total Environ 407:5653–5662

    Article  CAS  Google Scholar 

  69. Daga R, Ribeiro Guevara S, Sánchez ML, Arribére M (2008) Source identification of volcanic ashes by geochemical analysis of well preserved lacustrine tephras in Nahuel Huapi National Park. Appl Radiat Isot 66:1325–1336

    Article  CAS  Google Scholar 

  70. Ribeiro Guevara S, Meili M, Rizzo A, Daga R, Arribére M (2010) Sediment records of highly variable mercury input to mountain lakes in Patagonia during the past millennium. Atmos Chem Phys 10:3443–3453

    Article  Google Scholar 

  71. Tylmann W, Enters D, Kinder M, Moska P, Ohlendorf C, Poręba G, Zolitschka B (2013) Multiple dating of varved sediments from Lake Łazduny, northern Poland: toward an improved chronology for the last 150 years. Quat Geochronol 15:98–107

    Article  Google Scholar 

  72. Mast MA, Manthorne DJ, Roth DA (2010) Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western U.S. inferred from Lake-sediment cores. Atmos Environ 44:2577–2586

    Article  CAS  Google Scholar 

  73. Huh C-A, Chu K-S, Wei C-L, Liew P-M (1996) Lead-210 and plutonium fallout in Taiwan as recorded at a subalpine lake. J Southeast Asian Earth Sci 14:373–376

    Article  Google Scholar 

  74. Joshi LV, Rangarajan C, Gopalakrishnan S (1969) Measurement of 210Pb in surface, air and precipitation. Tellus 21:107–112

    Article  CAS  Google Scholar 

  75. Von Gunten HR, Moser RN (1993) How reliable is the 210Pb dating method? Old and new results from Switzerland. J Paleolimnol 9(2):161–178

    Article  Google Scholar 

  76. Guevara SR, Rizzo A, Sánchez R, Arribére M (2003) 210Pb fluxes in sediment layers sampled from northern Patagonia lakes. J Radioanal Nucl Chem 258(3):583–595

    Article  Google Scholar 

  77. Talbot RW (1984) Seasonal variations of 210Pb and 210Po concentrations in an oligotrophic lake. Geochim Cosmochim Acta 48:2053–2063

    Article  CAS  Google Scholar 

  78. Stiller M, Imboden DM (1986) 210Pb in Lake Kinneret waters and sediments: residence times and fluxes. Chapter 44. In: PL Sly (ed) Sediments and water interactions. Springer, New York

  79. Karaoglu O (2014) Tectonic controls on the Yamanlar volcano and Yuntdağı volcanic region, western Turkey: implications for an incremental deformation. J Volcanol Geoth Res 274:16–33

    Article  CAS  Google Scholar 

  80. Atgin RS, El-Agha O, Zararsiz A, Kocatas A, Parlak H, Tuncel G (2000) Investigation of the sediment pollution in Izmir Bay: trace elements. Spectrochim Acta B 55(7):1151–1164

    Article  Google Scholar 

  81. Zhang LP, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54(6):1051–1070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Ege University Science and Technology Centre (EBILTEM). Contract ID: 12NBE007. Authors thank to EBILTEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sert, I., Eftelioglu, M. & Ozel, F.E. Historical evolution of heavy metal pollution and recent records in Lake Karagöl sediment cores using 210Pb models, western Turkey. J Radioanal Nucl Chem 314, 2155–2169 (2017). https://doi.org/10.1007/s10967-017-5627-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5627-x

Keywords

Navigation