Skip to main content
Log in

Removal of pertechnetate from aqueous solution using activated pyrolytic rubber char

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Low-cost adsorbents, synthesized by pyrolysis of waste rubber (CR) and activated with KOH (CRA), have shown the high removal ability of \({}^{{99{\text{m}}}}{\text{TcO}}_{4}^{ - }\) from aqueous solutions in wide range of pHs (2–10) with fast adsorption rate. The Langmuir and Freundlich models suggests monolayer and multilayer adsorption of \({}^{{99{\text{m}}}}{\text{TcO}}_{4}^{ - }\) onto CR and CRA surface, respectively. The removal mechanism of \({}^{{99{\text{m}}}}{\text{TcO}}_{4}^{ - }\) from solution occurs by replacement with OH from surface groups (phenolic and/or accompanying carboxylic) of CR and CRA indicating anion exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi K, Hou X, Roos P, Wu W (2012) Determination of technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20

    Article  CAS  Google Scholar 

  2. Zhang QL, Gao N-Y, Lin Y et al (2007) Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon. Water Environ Res 79:931–936

    Article  CAS  Google Scholar 

  3. Watson JHP, Ellwood DC (2003) The removal of the pertechnetate ion and actinides from radioactive waste streams at Hanford, Washington, USA and Sellafield, Cumbria, UK: the role of iron-sulfide-containing adsorbent materials. Nucl Eng Des 226:375–385

    Article  CAS  Google Scholar 

  4. Chen J, Veltkamp AC (2002) Solvent extraction and ion exchange pertechnetate removal by macroporous polymer impregnated with 2-nitrophenyl octyl ether (NPOE). Solvent Extr Ion Exch 20:515–524

    Article  CAS  Google Scholar 

  5. Ito K, Akiba K (1991) Adsorption of pertechnetate ion on active carbon from acids and their salt solutions. J Radioanal Nucl Chem 152:381–390

    Article  CAS  Google Scholar 

  6. Popova NN, Bykov GL, Petukhova GA et al (2013) Sorption of Tc(VII) and Am(III) by carbon materials: effect of oxidation. J Radioanal Nucl Chem 298:1463–1468

    Article  CAS  Google Scholar 

  7. Wang Y, Gao H, Yeredla R et al (2007) Control of pertechnetate sorption on activated carbon by surface functional groups. J Colloid Interface Sci 305:209–217

    Article  CAS  Google Scholar 

  8. Liang L, Gu B, Yin X (1996) Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep Technol 6:111–122

    Article  CAS  Google Scholar 

  9. Suzuki T, Fujii Y, Yan W et al (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282:641–644

    Article  CAS  Google Scholar 

  10. Hughes LD, DeVol TA (2006) Characterization of a Teflon® coated semiconductor detector flow cell for monitoring of pertechnetate in groundwater. J Radioanal Nucl Chem 267:287–295

    Article  CAS  Google Scholar 

  11. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  12. Gumus RH, Okpeku I (2015) Production of activated carbon and characterization from snail shell waste (Helix pomatia). Adv Chem Eng Sci 5:51–61

    Article  CAS  Google Scholar 

  13. Gu B, Dowlen KE, Liang L, Clausen JL (1996) Efficient separation and recovery of technetium-99 from contaminated groundwater. Sep Technol 6:123–132

    Article  CAS  Google Scholar 

  14. Holm E, Gäfvert T, Lindahl P, Roos P (2000) In situ sorption of technetium using activated carbon. Appl Radiat Isot 53:153–157

    Article  CAS  Google Scholar 

  15. Galamboš M, Daňo M, Viglašová E et al (2015) Effect of competing anions on pertechnetate adsorption by activated carbon. J Radioanal Nucl Chem 304:1219–1224

    Article  Google Scholar 

  16. Yachidate A (1992) Behavior of pertechnetate ion adsorption from aqueous solutions shown by activated carbons derived from different sources. Carbon 30:767–771

    Article  Google Scholar 

  17. Acevedo B, Barriocanal C (2015) Texture and surface chemistry of activated carbons obtained from tyre wastes. Fuel Process Technol 134:275–283

    Article  CAS  Google Scholar 

  18. Hamadi NK, Chen Xiao Dong, Farid MM, Lu MGQ (2001) Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem Eng J 84:95–105

    Article  CAS  Google Scholar 

  19. Hamadi NK, Swaminathan S, Chen XD (2004) Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires. J Hazard Mater 112:133–141

    Article  CAS  Google Scholar 

  20. San Miguel G, Fowler GD, Sollars CJ et al (2002) Adsorption of organic compounds from solution by activated carbons produced from waste tyre rubber. Sep Sci Technol 37:663–676

    Article  CAS  Google Scholar 

  21. Nakagawa K, Namba A, Mukai SR et al (2004) Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Res 38:1791–1798

    Article  CAS  Google Scholar 

  22. Tanthapanichakoon W, Ariyadejwanich P, Japthong P et al (2005) Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res 39:1347–1353

    Article  CAS  Google Scholar 

  23. Garcia ITS, Nunes MR, Carreño NLV et al (2007) Obtenção e Caracterização de Carbono Ativado a partir de Resíduos Provenientes de Bandas de Rodagem. Polímeros Ciência e Tecnol 17:329–333

    Article  CAS  Google Scholar 

  24. Teng H, Lin YC, Hsu LY (2000) Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide. J Air Waste Manag Assoc 50:1940–1946

    Article  CAS  Google Scholar 

  25. Čerović LS, Milonjić SK, Todorović MB et al (2007) Point of zero charge of different carbides. Colloids Surf A Physicochem Eng Asp 297:1–6

    Article  Google Scholar 

  26. Tzeng SS, Hung KH, Ko TH (2006) Growth of carbon nanofibers on activated carbon fiber fabrics. Carbon 44:859–865

    Article  CAS  Google Scholar 

  27. Short MA, Walker PLJ (1963) Measurement and crystal sizes of interlayer spacings carbons in turbostratic carbons. Carbon 1:3–9

    Article  CAS  Google Scholar 

  28. Saikia D, Wang T, Chou C et al (2015) A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Adv 5:42922–42930

    Article  CAS  Google Scholar 

  29. Chang-Wook L, Seung-Beom Y, Hyun-Kyung K et al (2014) A two dimensional highly ordered mesoporous carbon/graphene nanocomposite for electrochemical double layer capacitors: effect of electrical and ionic conduction pathways. J Mater Chem A 5:2314–2322

    Google Scholar 

  30. Gómez Costa M, Juárez J, Anunziata O (2016) In: Sabet Dariani R (ed) Microporous and mesoporous materials. Zagreb, InTech

    Google Scholar 

  31. Lj Matović, Vukelić N, Jovanović U et al (2016) Mechanochemically improved surface properties of activated carbon cloth for the removal of As(V) from aqueous solutions. Arab J Chem. doi:10.1016/j.arabjc.2016.07.004

    Google Scholar 

  32. Painter PC, Snyder RW, Starsinic M et al (1981) Concerning the application of Ft–Ir to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Appl Spectrosc 35:475–485

    Article  CAS  Google Scholar 

  33. Guedidi H, Reinert L, Soneda Y et al (2014) Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arab J Chem. doi:10.1016/j.arabjc.2014.03.007

    Google Scholar 

  34. Gupta VK, Ali I, Saleh TA et al (2013) Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res 20(1261–1268):9

    Google Scholar 

  35. Boonamnuayvitaya V, Sae-Ung S, Tanthapanichakoon W (2005) Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Sep Purif Technol 42:159–168

    Article  CAS  Google Scholar 

  36. Saha B, Harry ID, Siddiqui U (2009) Electrochemically modified viscose-rayon-based activated carbon cloth for competitive and noncompetitive sorption of trace cobalt and lead ions from aqueous solution. Sep Sci Technol 44:3950–3972

    Article  CAS  Google Scholar 

  37. Moreno-Castilla C, López-Ramón M, Carrasco-Marín F et al (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38:1995–2001

    Article  CAS  Google Scholar 

  38. Moreno-Castilla C, Rivera-Utrilla J, Joly JP et al (1995) Thermal regeneration of an activated carbon exhausted with different substituted phenols. Carbon 33:1417–1423

    Article  CAS  Google Scholar 

  39. Wang C, Liu J, Zhang Z et al (2012) Adsorption of Cd(II), Ni(II), and Zn(II) by tourmaline at acidic conditions: kinetics, thermodynamics, and mechanisms. Ind Eng Chem Res 51:4397–4406

    Article  CAS  Google Scholar 

  40. Suescún-Mathieu E, Bautista-Carrizosa A, Sierra R et al (2014) Carboxylic acid recovery from aqueous solutions by activated carbon produced from sugarcane bagasse. Adsorption 20:935–943

    Article  Google Scholar 

  41. Ruiz HA, Zambrano MA, Giraldo L (2015) Production and characterisation of activated carbon from oil-palm shell for carboxylic acid. Orient J Chem 31:753–762

    Article  CAS  Google Scholar 

  42. Rajec P, Rosskopfová O, Galamboš M et al (2016) Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. J Radioanal Nucl Chem 310:253–261

    Article  CAS  Google Scholar 

  43. Rajec P, Galamboš M, Daňo M et al (2015) Preparation and characterization of adsorbent based on carbon for pertechnetate adsorption. J Radioanal Nucl Chem 303:277–286

    Article  CAS  Google Scholar 

  44. Yamagishi I (1989) Separation of technetium. J Nucl Sci Technol 26:1038–1044

    Article  CAS  Google Scholar 

  45. Zhang J, Zhong Z, Shen D et al (2011) Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells preparation of bamboo-based activated carbon and its application in direct carbon fuel cells. Energy Fuels 25:2187–2193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (Project No. 451-03-545/2015-09/06) and Slovak Research and Development Agency (Contract No. SK-SRB-2013-0048) with financial contribution for stays of the scientists from Vinča Institute of Nuclear Sciences (Serbia) and Comenius University (Slovakia). Also, the part of this scientific mission was financially supported by the Ministry of Education, Science and Technological Development of Republic of Serbia through the projects No. III 45 012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lj. Matović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matović, L., Đukić, A., Omerašević, M. et al. Removal of pertechnetate from aqueous solution using activated pyrolytic rubber char. J Radioanal Nucl Chem 314, 897–905 (2017). https://doi.org/10.1007/s10967-017-5442-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5442-4

Keywords

Navigation