Skip to main content
Log in

Various flowsheets of actinides recovery with diamides of heterocyclic dicarboxylic acids

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Solvents on the base of diamides of heterocyclic dicarboxylic acids are promising alternatives for studied Grouped ActiNide EXtraction (GANEX) solvents. Advantage of these ligands is the possibility of simultaneous extraction not only of residual uranium and plutonium, but also minor actinides—neptunium, americium and curium. Two flowsheets on the base of diamides of heterocyclic dicarboxylic acids for separation of actinides form acidic solutions were developed, tested in laboratory scale and compared. Both flowsheets allow separation of more than 99.95% of actinides from raffinates with high content of lanthanides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adnet J-M, Miguirditchian M, Hill C, Heres X, Lecomte M, Masson M, Brossard P, Baron P (2005) Development of new hydrometallurgical processes for actinide recovery: GANEX concept. Proc. of Global-2005 Conf. paper 119

  2. Warin D (2010) Future nuclear fuel cycles: prospect and challenges for actinide recycling. IOP Conf Series. doi:10.1088/1757-899X/9/1/012063

    Google Scholar 

  3. Miguirditchian M, Sorel C, Cames B, Bisel I, Baron P, Espinoux D, Calor J-N, Viallesoubranne C, Lorrain B, Masson M (2009) HA demonstration in the Atalante facility of the GANEX 1st cycle for the selective extraction of uranium from HLW. Proc. of Global-2009 Conf. Sustainable Options & Industrial Perspectives, The Nuclear Fuel Cycle

    Google Scholar 

  4. Miguirditchian M, Roussel H, Chareyre L, Baron P, Espinoux D, Calor J-N, Viallesoubranne C, Larraine B, Masson M (2009) HA demonstration in the Atalante facility of the GANEX 2nd cycle for the grouped TRU extraction. Proc. of Global-2009 Conf. (The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives)

  5. Aneheim E, Ekberg C, Fermvik A, Foreman M, Retegan T, Skarnmark GA (2010) TBP/BTBP-based GANEX separation process—part 1: feasibility. Solv Extr Ion Exch 28:437–458

    Article  CAS  Google Scholar 

  6. Aneheim E, Ekberg C, Fermvik A, Foreman M, Grűner B, Hájková Z, Kvičalová M (2011) A TBP/BTBP-based GANEX separation process—part 2: ageing, hydrolytic, and radiolytic stability. Solv Extr Ion Exch 29:157–175

    Article  CAS  Google Scholar 

  7. Aneheim E, Ekberg C, Foreman MRS (2013) A TBP/BTBP-based GANEX separation process—part 3: fission product handling. Solv Extr Ion Exch 31:237–252

    Article  CAS  Google Scholar 

  8. Löfström-Engdahl E, Aneheim E, Ekberg C, Foreman M, Skarnemark G (2013) Comparison of the extraction as a function of time in two GANEX solvents: influence of metal loading, interfacial tension, and density. Solv Extr Ion Exch 31:604–616

    Article  Google Scholar 

  9. Aneheim E, Ekberg C, Foreman MRS, Löfström-Engdahl E, Mabile N (2012) Studies of a solvent for GANEX applications containing CyMe4-BTBP and DEHBA in cyclohexanone sep. Sci Technol 47:663–669

    CAS  Google Scholar 

  10. Bell K, Carpentier C, Carrott M, Geist A, Gregson C, Hérès X, Magnusson D, Malmbeck R, McLachlan F, Modolo G, Müllich U, Sypula M, Taylor R, Wilden A (2012) Progress towards the development of a new GANEX process. Procedia Chem 7:392–397

    Article  CAS  Google Scholar 

  11. Carrot MJ, Gregson CR, Taylor RJ (2013) Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene. Solv Extr Ion Exch 31:463–482

    Article  CAS  Google Scholar 

  12. Carrott M, Bell K, Brown J, Geist A, Gregson C, Hères X, Maher C, Malmbeck R, Mason C, Modolo G, Müllich U, Sarsfield M, Wilden A, Taylor R (2014) Development of a new flowsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solv Extr Ion Exch 32:447–467

    Article  CAS  Google Scholar 

  13. Hudson MJ, Harwood LM, Laventine DM, Lewis FW (2013) Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides. Inorg Chem 52:3414–3428

    Article  CAS  Google Scholar 

  14. Marie C, Miguirditchian M, Guillaneux D, Bisson J, Pipelier M, Dubreuil D (2011) New bitopic ligands for the group actinide separation by solvent extraction. Solv Extr Ion Exch 29:292–315

    Article  CAS  Google Scholar 

  15. Alyapyshev M, Babain V, Tkachenko L (2014) Amides of heterocyclic carboxylic acids as novel extractants for high-level waste treatment. Radiochemistry 56:565–574

    Article  CAS  Google Scholar 

  16. Yu Alyapyshev M, Babain VA, Tkachenko LI, Eliseev II, Didenko AV, Petrov ML (2011) Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure. Solv Extr Ion Exch 29:619–636

    Article  Google Scholar 

  17. Kirsanov DO, Borisova NE, Reshetova MD, Ivanov AV, Korotkov LA, Eliseev II, Alyapyshev MYu, Spiridonov IG, Legin AV, Vlasov YuG, Babain VA (2012) Novel diamides of 2,2'-dipyridyl-6,6'-dicarboxylic acid: synthesis, coordination properties, and possibilities of use in electrochemical sensors and liquid extraction. Russ Chem Bull Intern Ed 61:881–890

    Article  CAS  Google Scholar 

  18. Galletta M, Scaravaggi S, Macerata E, Famulari A, Mele A, Panzeri W, Sansone F, Casnati A, Mariani M (2013) 2,9-Dicarbonyl-1,10-phenanthroline derivatives with an unprecedented Am(III)/Eu(III) selectivity under highly acidic conditions. Dalton Trans 42:16930–16938

    Article  CAS  Google Scholar 

  19. Xiao C-L, Wang C-Z, Yuan L-Y, Li B, He H, Wang S, Zhao Y-L, Chai Z-F, Shi W-Q (2014) Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg Chem 53:1712–1720

    Article  CAS  Google Scholar 

  20. Merrill D, Hancock RD (2011) Metal ion selectivities of the highly preorganized tetradentate ligand 1,10-phenanthroline-2,9-dicarboxamide with lanthanide(III) ions and some actinide ions. Radiochim Acta 99:161–166

    Article  CAS  Google Scholar 

  21. Zhang X, Yuan L, Chai Z, Shi W (2016) A new solvent system containing N, N′-diethyl-N, N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO2 2+ extraction. Sep Purif Technol 168:232–237

    Article  CAS  Google Scholar 

  22. Alyapyshev M, Ashina J, Dar’in D, Kenf E, Kirsanov D, Tkachenko L, Legin A, Starova G, Babain V (2016) 1,10-Phenanthroline-2,9-dicarboxamides as ligands for separation and sensing of hazardous metals. RSC Adv 73:68642–68652

    Article  Google Scholar 

  23. Yu Alyapyshev M, Babain VA, Tkachenko LI, Paulenova A, Popova AA, Borisova NE (2014) New diamides of 2,2′-dipyridyl-6,6′-dicarboxylic acid for actinide-lanthanide separation. Solv Extr Ion Exch 32:138–152

    Article  Google Scholar 

  24. Egorov GF (1986) Radiation chemistry of extraction systems. Ehnergoatomizdat, Moscow

    Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by Government of Russian Federation, Grant 074-U01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Alyapyshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyapyshev, M., Babain, V. & Tkachenko, L. Various flowsheets of actinides recovery with diamides of heterocyclic dicarboxylic acids. J Radioanal Nucl Chem 312, 47–58 (2017). https://doi.org/10.1007/s10967-017-5194-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5194-1

Keywords

Navigation