Skip to main content
Log in

Characteristics of equilibrium and kinetic for U(VI) adsorption using novel diamine-functionalized hollow silica microspheres

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The diamine-functionalized hollow silica microspheres (DA-HSM) were successfully synthesized for highly efficient sorption of U(VI). The sorption of U(VI) on DA-HSM may be proceeded through anion-exchange and adduct-type mechanism at low pH and amine-U(VI) chelation at high pH. The sorption kinetic could be described by the pseudo-second-order model; whereas the sorption isotherms could be fitted by the Langmuir model with the maximum mono-layer sorption capacity of 126.6 mg/g at 298 K. U(VI) sorption on DA-HSM was endothermic, spontaneous, and feasible in nature. The DA-HSM could be regenerated and reused without significant reduction of the sorption capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindner H, Schneider E (2015) Review of cost estimates for uranium recovery from seawater. Energ Econ 49:9–22

    Article  Google Scholar 

  2. Zhao YG, Li JX, Zhao LP, Zhang SW, Huang YS, Wu XL, Wang XK (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  3. Vivero-Escoto JL, Carboni M, Abney CW, Dekrafft KE, Lin WB (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor Mesopor Mater 180:22–31

    Article  CAS  Google Scholar 

  4. Dudarko OA, Gunathilake C, Wickramaratne NP, Sliesarenko VV, Zub YL, Górka J, Dai S, Jaroniec M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloid Surf A 482:1–8

    Article  CAS  Google Scholar 

  5. El-Toni AM, Habila MA, Ibrahim MA, Labis JP, ALOthman ZA (2014) Simple and facile synthesis of amino functionalized hollow core–mesoporous shell silica spheres using anionic surfactant for Pb(II), Cd(II), and Zn(II) adsorption and recovery. Chem Eng J 251:441–451

    Article  CAS  Google Scholar 

  6. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic highmagnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  CAS  Google Scholar 

  7. Zhu YF, Kockrick E, Ikoma T, Hanagata N, Kaskel S (2009) An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. J Mater Chem 21:2547–2553

    Article  CAS  Google Scholar 

  8. Li L, Ding J, Xue J (2009) Macroporous silica hollow microspheres as nanoparticle collectors. Chem Mater 21:3629–3637

    Article  CAS  Google Scholar 

  9. Hakami O, Zhang Y, Banks CJ (2012) Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46:3913–3922

    Article  CAS  Google Scholar 

  10. Emadi M, Shams E (2010) Immobilization of thiadiazole derivatives on magnetite mesoporous silica shell nanoparticles in application to heavy metal removal from biological samples. AIP Conf Proc 1311:127–134

    Article  CAS  Google Scholar 

  11. Tang Y, Liang S, Wang J, Yu S, Wang Y (2013) Amino-functionalized core–shell magnetic mesoporous composite microspheres for Pb(II) and Cd(II) removal. J Environ Sci 25:830–837

    Article  CAS  Google Scholar 

  12. Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22

    Article  CAS  Google Scholar 

  13. Jin JY, Huang X, Zhou LM, Peng J, Wang Y (2015) In situ preparation of magnetic chitosan resins functionalized with triethylene-tetramine for the adsorption of uranyl(II) ions. J Radioanal Nucl Chem 303:797–806

    Article  CAS  Google Scholar 

  14. Wang JS, Peng RT, Yang JH, Liu YC, Hu XJ (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr Polym 84:1169–1175

    Article  CAS  Google Scholar 

  15. Yan ZJ, Wang SB, Wu LM, Li Y, Li BZ, Zhu GS, Yang YG (2012) Preparation of mesoporous 1,2-ethylene-silica hollow spheres with tunable wall thickness. Mater Lett 78:14–17

    Article  CAS  Google Scholar 

  16. Kothalawala N, Blitz JP, Gunko VM, Jaroniec M, Grabicka B, Semeniuc RF (2013) Post-synthesis surface-modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions. J Colloid Interface Sci 392:57–64

    Article  CAS  Google Scholar 

  17. Ritcey GM, Ashbrook AW (1979) Solvent extraction: principles and applications to process metallurgy. Elsevier, Amsterdam

    Google Scholar 

  18. Kuang SP, Wang ZZ, Liu J, Wu ZC (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219

    Article  CAS  Google Scholar 

  19. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  20. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  21. Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107–4114

    Article  CAS  Google Scholar 

  22. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S (2011) Sorption of uranium (VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

  23. Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011–4016

    Article  CAS  Google Scholar 

  24. Venkatesan K, Sukumaran V, Antony M, Vasudeva Rao P (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450

    Article  CAS  Google Scholar 

  25. Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40:7446–7453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Fund Program (21366001; 11375043), the International Scientific and Technological Cooperation Projects (2015DFR61020), and the Jiangxi provincial Science & Technology Pillar Program (S2016NYYBF0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Zhou, L., Huang, Z. et al. Characteristics of equilibrium and kinetic for U(VI) adsorption using novel diamine-functionalized hollow silica microspheres. J Radioanal Nucl Chem 311, 269–278 (2017). https://doi.org/10.1007/s10967-016-4937-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4937-8

Keywords

Navigation