Skip to main content
Log in

Separation of no-carrier-added 195(m,g),197mHg from Au target by ionic liquid and salt based aqueous biphasic systems

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ionic liquid-salt based aqueous biphasic systems (ABS) are examples of ABS of salt–salt combination. In the present study, ABS composed of water soluble ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim]Cl) and kosmotropic salts K3PO4, K2CO3 were applied in the separation of no-carrier-added (NCA) 195(m,g),197mHg radionuclides from bulk Au target. The 195(m,g),197mHg radionuclides were produced by irradiating gold foil with 23 MeV protons. NCA Hg radionuclides were extracted into the IL phase leaving bulk Au in the salt rich phase. At the optimized condition high separation factors, 3.5 × 104 and 5.5 × 104 were obtained when K3PO4 and K2CO3 were used as salt rich phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Freire MG, Clàudio AFM, Araùjo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995

    Article  CAS  Google Scholar 

  2. Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 109Cd from natural silver target using RTIL 1-butyl-3-methylimidazolium hexafluorophosphate. J Radioanal Nucl Chem 298:1049–1054

    Article  CAS  Google Scholar 

  3. Ghosh K, Maiti M, Lahiri S, Hussain VA (2014) Ionic liquid-salt based aqueous biphasic system for separation of 109Cd from silver target. J Radioanal Nucl Chem 302:925–930

    Article  CAS  Google Scholar 

  4. Maiti M, Ghosh K, Lahiri S (2015) Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target. J Radioanal Nucl Chem 303:2033–2040

    CAS  Google Scholar 

  5. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633

    Article  CAS  Google Scholar 

  6. Bridges NJ, Gutowski KE, Rogers RD (2007) Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chem 9:177–183

    Article  CAS  Google Scholar 

  7. World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva

    Google Scholar 

  8. United States Environmental Protection Agency (2009) National primary drinking water regulations. EPA 816-F-09-004

  9. Hilson G (2006) Abatement of mercury pollution in the small-scale gold mining industry: restructuring the policy and research agendas. Sci Total Environ 362:1–14

    Article  CAS  Google Scholar 

  10. Wackers FJ, Giles RW, Hoffer PB, Lange RC, Berger HJ, Zaret BL, Pytlik L, Plankey M (1982) Gold-195m, a new generator-produced short-lived radionuclide for sequential assessment of ventricular performance by first pass radionuclide angiocardiography. Am J Cardiol 50:89–94

    Article  CAS  Google Scholar 

  11. Bett R, Cuninghame JG, Sims HE, Willis HH, Dymond DS, Flatman W, Stone DL, Elliott AT (1983) Development and use of the 195mHg-195mAu generator for first pass radionuclide angiography of the heart. Int J Appl Radiat Isotopes 34:959–963

    Article  CAS  Google Scholar 

  12. Walther M, Preusche S, Pietzsch H-J, Bergmann R, Steinbach J (2014) Cyclotron based production of high specific activity [197(m)Hg]HgCl2. Nucl Med Biol 41:646

    Article  Google Scholar 

  13. Ditrói F, Tárkányi F, Takács S, Hermanne A (2016) Activation cross sections of proton induced nuclear reactions on gold up to 65 MeV. Appl Radiat Isotopes 113:96–109

    Article  Google Scholar 

  14. Mandal S, Nayak D (2010) Production, separation and speciation of no-carrier-added Hg radionuclides using greener methodologies. Radiochim Acta 98:45–51

    Article  CAS  Google Scholar 

  15. Walther M, Preusche S, Bartel S, Wunderlich G, Freudenberg R, Steinbach J, Pietzsch H-J (2015) Theranostic mercury: 197(m)Hg with high specific activity for imaging and therapy. Appl Radiat Isotopes 97:177–181

    Article  CAS  Google Scholar 

  16. Jahn P, Probst H-J, Djaloeis A, Davidson WF, Mayer-Böricke C (1973) Measurement and interpretation of 197Au(d, xnyp) excitation functions in the energy range from 25 to 86 MeV. Nucl Phys A 209:333–347

    Article  CAS  Google Scholar 

  17. Gadioli E, Erba EG, Hogan JJ (1977) Pre-equilibrium decay of nuclei with A ≃ 200 at excitation energies to 90 MeV. II Nuovo Cimento A 40:383–400

    Article  Google Scholar 

  18. Tárkányi F, Ditrói F, Hermanne A, Takács S, Király B, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2011) Activation cross-sections of deuteron induced nuclear reactions on gold up to 40 MeV. Nucl Instrum Methods B 269:1389–1400

    Article  Google Scholar 

  19. Nagame Y, Sueki K, Baba S, Nakahara H (1990) Isomeric yield ratios in proton-, 3He-, and α-particle-induced reactions on 197Au. Phys Rev C 41:889–897

    Article  CAS  Google Scholar 

  20. Satheesh B, Musthafa MM, Singh BP, Prasad R (2012) Study of isomeric cross-section ratio and pre-equilibrium fraction in proton and alpha particle induced nuclear reactions on 197Au. Int J Mod Phys E 21:1250059

    Article  Google Scholar 

  21. Al-Abyad M, Tárkányi F, Ditrỏi F, Takács S (2013) Excitation function of 3He induced nuclear reactions on natPt up to 26 MeV. Appl Radiat Isotopes 72:73–82

    Article  CAS  Google Scholar 

  22. Sudár S, Qaim SM (2006) Cross sections for the formation of 195Hgm, g, 197Hgm, g, and 196Aum, g in α and 3He-particle induced reactions on Pt: effect of level density parameters on the calculated isomeric cross-section ratio. Phys Rev C 73:034613

  23. Hermanne A, Tárkányi F, Takács S, Shubin YN, Kovalev S (2006) Experimental determination of activation cross section of alpha-induced nuclear reactions on natPt. Nucl Instrum Methods B 251:333–342

    Article  CAS  Google Scholar 

  24. Lahiri S, Roy K (2009) A green approach for sequential extraction of heavy metals from Li irradiated Au target. J Radioanal Nucl Chem 281:531–534

    Article  CAS  Google Scholar 

  25. Nayak D, Lahiri S (2002) Production of tracer packet of heavy and toxic elements. J Radioanal Nucl Chem 254:619–623

    Article  CAS  Google Scholar 

  26. Lahiri S, Banerjee K, Das NR (1999) Production of carrier free 192,193Hg and 192,193Au in 16O irradiated tantalum target and their separation by liquid-liquid extraction. J Radioanal Nucl Chem 242:497–504

    Article  CAS  Google Scholar 

  27. Nayak D, Lahiri S, Ramaswami A (2002) Alternative radiochemical heavy ion activation methods for the production and separation of thallium radionuclides. Appl Radiat Isotopes 57:483–489

    Article  CAS  Google Scholar 

  28. Nayak D, Lahiri S, Mukhopadhyay A, Pal R (2003) Application of tracer packet technique to the study of the bio-sorption of heavy and toxic metal radionuclides by algae. J Radioanal Nucl Chem 256:535–539

    Article  CAS  Google Scholar 

  29. Maji S, Basu S, Ramaswami A, Lahiri S (2007) Application of tracer packet technique for multielemental uptake studies by ceric vanadate. J Radioanal Nucl Chem 271:391–396

    Article  CAS  Google Scholar 

  30. Roy K, Basu S, Ramaswami A, Lahiri S (2003) Application of tracer packet technique for multielemental uptake studies on the inorganic ion exchanger zirconium vanadate. Appl Radiat Isotopes 59:105–108

    Article  CAS  Google Scholar 

  31. Maji S, Basu S, Lahiri S (2007) Studies on multielemental uptake of amide incorporated Amberlite IRC-50 using tracer packet techniques. Indian J Chem 46A:97–100

    CAS  Google Scholar 

  32. Roy K, Basu S, Nayak D, Lahiri S (2004) Studies on the multielemental uptake by thiosemicarbazide incorporated Amberlite IRC-50 using tracer packet technique. Indian J Chem 43A:1152–1155

    CAS  Google Scholar 

  33. Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier-added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59–65

    Article  CAS  Google Scholar 

  34. Samanta TD, Laskar S, Nayak D, Lahiri S (2007) Studies on metal-protein interactions: inter-comparison among various approaches. J Radioanal Nucl Chem 273:323–325

    Article  CAS  Google Scholar 

  35. Nayak D, DattaSamanta T, Laskar S, Lahiri S (2007) Application of tracer packet technique for studying metal-protein interactions with Erythrina variegata Linn. seed proteins. J Radioanal Nucl Chem 271:387–390

    Article  CAS  Google Scholar 

  36. Banerjee A, Lahiri S (2009) Albumin metal interaction: a multielemental radiotracer study. J Radioanal Nucl Chem 279:733–741

    Article  CAS  Google Scholar 

  37. Cotton FA, Wilkinson G (1984) The elements of the second and third transition series. Advanced inorganic chemistry—a comprehensive text, 3rd edn. Wiley Eastern Limited, New Delhi

    Google Scholar 

  38. Mironov IV (2005) Properties of gold(III) hydroxide and aquahydroxogold(III) complexes in aqueous solution. Russ J Inorg Chem 50:1115–1120

    Google Scholar 

  39. Kozin LF, Hansen S (2013) Chemical properties of mercury. Mercury handbook: chemistry, applications and environmental impact. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  40. Lafont D, Soulages OE, Acebal SG, Bonorino AG (2013) Sorption and desorption of mercury(II) in saline and alkaline soils of Bahía Blanca, Argentina. Environ Earth Sci 70:1379–1387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to BARC-TIFR Pelletron staffs for their help and co-operation during our experiment. We are also thankful to the TIFR target laboratory for their help during target preparation. This work is part of the SINP-DAE-12 five year plan project ‘Trace Ultra Trace Analysis and Isotope Production (TULIP)’ for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Lahiri, S. & Maiti, M. Separation of no-carrier-added 195(m,g),197mHg from Au target by ionic liquid and salt based aqueous biphasic systems. J Radioanal Nucl Chem 310, 1345–1351 (2016). https://doi.org/10.1007/s10967-016-4931-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4931-1

Keywords

Navigation