Skip to main content
Log in

Isotopic and hydrochemical evidence of groundwater recharge in the Hopq Desert, NW China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Artesian wells and lakes are found in the hinterland of the Hopq Desert, China. Analysis of soil profiles has revealed that the local vadose zone is always in a state of water deficit because of strong evaporation, and precipitation cannot infiltrate into the groundwater. This research indicated that soil water and surface water are recharged by groundwater and that the groundwater is recharged via an external source. Analyses of the stable isotopes in precipitation and of the water budget suggested that surface water in the Qiangtang Basin on the Tibetan Plateau might correspond to the groundwater in the Hopq Desert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hou GC, Zhao MS, Wang YH et al (2006) Groundwater investigation in the Ordos Basin (in Chinese). China Geological Survey, Beijing

    Google Scholar 

  2. Hou GC, Su XS, LIn XY et al (2007) Environmental isotopic composition of natural water in Ordos Cretaceous Groundwater Basin and its significance for hydrological cycle. J Jilin Univ (Earth Science edn) 37(2):255–260

    CAS  Google Scholar 

  3. Hou GC, Liang YP, Su XS et al (2008) Groundwater systems and resources in the Ordos Basin, China. Acta Geol Sin 82(5):1061–1069

    Google Scholar 

  4. Zhang MS, Hu FS, Yin LH (2008) Conceptual model of hydrogeology of the cretaceous groundwater basin of the Ordos Basin, China. Geol Bull China 27(3):1115–1122

    Google Scholar 

  5. Yang YC, Shen ZL, Wen DG et al (2011) Formation and evolution of groundwater in the Ordos Cretaceous Basin: evidence from Chlorine and its isotope. Acta Geol Sin 85(4):586–595

    Article  Google Scholar 

  6. Chen JS, Yang GL, Wang T et al (2014) Soil water flow tracer test in northwest Ordos Basin, Inner Mongolia and discussion on recharge resources of artesian wells. Acta Geol Sin 35(3):365–374

    CAS  Google Scholar 

  7. Chen JS, Chen XX, Wang T (2014) Isotopes tracer research of wet layer water sources in Alxa Desert. Adv Water Sci 2:196–206

    Google Scholar 

  8. Su XS, Lin XY, Dong WH et al (2007) Application of inverse geochemical modeling in the correction of groundwater 14 C dating: advances and thoughts. J Jilin Univ (Earth Science edn) 37(2):271–277

    CAS  Google Scholar 

  9. Yin LH, Hou GC, Tao ZP et al (2010) Origin and recharge estimates of groundwater in the ordos plateau, People’s Republic of China. Environ Earth Sci 60(8):1731–1738

    Article  CAS  Google Scholar 

  10. Hou GC, Lin XY, Su XS, Wang XY et al (2006) Groundwater system in Ordos Cretaceous artisan Basin. J Jilin Univ (Earth Science edn.) 36(3):391–398

    Google Scholar 

  11. Hou GC, Liang YP, Yin LH et al (2009) Groundwater systems and water resources potential in the Ordos Basin. Hydrogeol Eng Geol 36(1):18–23

    Google Scholar 

  12. Li ZH, Zheng CB (2004) Evolution process of Paleo-karst and influence to reservoir: a case for Ordovician of Ordos Basin. Nat Gas Geosci 15(3):247–252

    CAS  Google Scholar 

  13. Zhang JL, Cao ZL, Yu JM (2003) Exploration the origin of dolomite. Mar Orig Petrol Geol 6:109–115

    Google Scholar 

  14. Chen JS, Wang T, Chen XX et al (2013) Discussion on the origin of groundwater in the Ordos Basin. Geol Rev 59(5):900–909

    CAS  Google Scholar 

  15. Chen XX, Chen JS, Wang T (2014) Discussion about dating problems of northern groundwater in China. Water Res Protect 2:1–6

    Article  Google Scholar 

  16. Chen JS, Liu XY, Wang CY et al (2012) Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Earth Sci 66(2):505–517

    Article  CAS  Google Scholar 

  17. Chen JS, Wang QQ (2012) A discussion of groundwater recharge sources in arid areas of North China. Water Res Protect 3:5–12

    CAS  Google Scholar 

  18. Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58(1):6–14

    Article  Google Scholar 

  19. Carter RC, Morgulis ED, Dottridge J et al (1994) Groundwater modelling with limited data: a case study in a semi-arid dunefield of northeast Nigeria. Q J Eng Geol Hydrogeol 27:S85–S94

    Article  Google Scholar 

  20. Gaye CB, Edmunds WM (1996) Groundwater recharge estimation using chloride stable isotopes and tritium profiles in the sands of northwestern Senegal. Environ Geol 27(3):246–251

    Article  Google Scholar 

  21. Gee GW, Hillel D (1998) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2:256–266

    Google Scholar 

  22. De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. J Hydrol 10:5–17

    Google Scholar 

  23. Molla D, Stefan W, Tenalem A (2008) Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J Hydrol 353:175–188

    Article  Google Scholar 

  24. Yuko A, Taro U, Nobuhito O (2002) Residence time and flow paths of water in steep unchanneled catchments, Tanakami, Japan. J Hydrol 261:173–192

    Article  Google Scholar 

  25. Aly AA (2015) Hydrochemical characteristics of Egypt western desert oases groundwater. Arab J Geosci 8(9):7551–7564

    Article  CAS  Google Scholar 

  26. Dogramaci S, Skrzypek G, Dodson W et al (2013) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of sub-tropical northwest Australia. J Hydrol 475(26):281–293

    Google Scholar 

  27. Song X, Wang P, Yu J et al (2011) Relationships between precipitation, soil water and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China. Environ Earth Sci 62(4):787–796

    Article  CAS  Google Scholar 

  28. Paternoster M, Liotta M, Favara R (2008) Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy. J Hydrol 348(1–2):87–97

    Article  Google Scholar 

  29. Rao BQ, Wang WB, Lan SB et al (2009) Development characteristics distribution of mincro-organisms within 3-year-old artificial algal crusts in Hopq Desert. Acta Hydrol Sin 33(5):937–944

    Article  Google Scholar 

  30. Wei YF, Guo K (2008) Effect of precipitation pattern on recruitment of soil water in Kubuqi Desert, northwestern China. J Plant Ecol 32(6):1346–1355

    Google Scholar 

  31. Huang T, Pang Z (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeol J 19(1):177–186

    Article  CAS  Google Scholar 

  32. Chen JS, Liu Z, Liu XY (2013) Deep-circulation groundwater maintains continuous deposition of dusty particles in the Loess Plateau. Acta Geol Sin 87(2):278–287

    CAS  Google Scholar 

  33. Li M, Gao J (2010) Basement faults and volcanic rock distributions in the Ordos Basin. Sci China Earth Sci 53(11):1625–1633

    Article  CAS  Google Scholar 

  34. Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173

    Article  Google Scholar 

  35. Shurabaji ARM, Philips FM, Campbell AR et al (1995) Application of a numerical model for simulation water flow, isotope transport and heat transfer in the unsaturated zone. J Hydrol 171:143–163

    Article  Google Scholar 

  36. Neman BD (1996) Geochemical investigations of calcite fracture fills and mesa-top water dynamics on the Pajarito Plateau. Dissertation, New Mexico Institute of Mining and Technology

  37. Socki RA, Karlsson HR, Gibson EK (1992) Extraction technique for the determination of oxygen-18 in water using pre-evacuated glass vials. Anal Chem 64(7):829–831

    Article  CAS  Google Scholar 

  38. Coleman ML, Shepherd TJ, Durham JJ et al (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54(6):993–995

    Article  CAS  Google Scholar 

  39. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271(5645):534–536

    Article  CAS  Google Scholar 

  40. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60:3359–3360

    Article  CAS  Google Scholar 

  41. Yang YC, Hou GC, Wen DG et al (2005) Hydrogen-oxygen isotope compositions of precipitation and seasonal effects on precipitation in Ordos Basin. Acta Geosci Sin 26:289–292

    Google Scholar 

  42. Liu JR, Song XF, Sun XM et al (2009) Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin. J Geogr Sci 19(2):164–174

    Article  Google Scholar 

  43. Craig H (1961) Isotopic variations in natural waters. Science 133:1702–1703

    Article  CAS  Google Scholar 

  44. Zimmermann U, Ehhalt D, Muennich KO (1967) Soil–water movement and evapotranspiration: changes in the isotopic composition of the water. Proc IAEA Symp Isotopes Hydrol 1968:567–585

  45. Gazis C, Feng X (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119(1–2):97–111

    Article  Google Scholar 

  46. Dansgaard W (1964) Stable isotopes in precipitation. Tellus A 16(4):436–471

    Article  Google Scholar 

  47. Zhao JB, Ke YU, Shao T et al (2011) A preliminary study on the water status in sand layers and its sources in the Tengger Desert. Res Sci 2:259–264

    Google Scholar 

  48. Feng Q, Cheng GD (1999) Moisture distribution and movement in sandy land of China. Acta Pedol Sin 36(02):225–236

    Google Scholar 

  49. Zhang WJ, Huang JT (2012) Distribution characters of precipitation in ordos basin. J Arid Land Res Environ 26(2):56–59

    CAS  Google Scholar 

  50. Chen JS, Li L, Wang JY et al (2004) Groundwater maintains dune landscape. Nature 432(7016):459–460

    Article  CAS  Google Scholar 

  51. Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochim Cosmochim Acta 53(8):1727–1740

    Article  CAS  Google Scholar 

  52. O’Day PA, Carroll SA, Waychunas GA (1998) Rock-water interactions controlling zinc, cadmium, and lead concentrations in surface waters and sediments, US Tri-State Mining District. 1. Molecular Identification Using X-ray Absorption Spectroscopy. Environ Sci Tech 32(7):943–955

    Article  Google Scholar 

  53. Rockware AqQA Software (2005) Version 1.1. http://www.rockware.com

  54. Durov SA (1948) Natural waters and graphic representation of their composition. In Dokl Akad Nauk SSSR 59:87–90

    CAS  Google Scholar 

  55. Cary JW, Mayland HF (1972) Salt and water movement in unsaturated frozen soil. Soil Sci Soc Am J 36(4):549–555

    Article  CAS  Google Scholar 

  56. Yang YC, Shen ZL, Wen DG et al (2008) Hydrochemical characteristics and sources of sulfate in groundwater of the ORDSO Cretaceous Groundwater Basin. Acta Geosci Sin 29(5):553–562

    Google Scholar 

  57. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678

    Article  CAS  Google Scholar 

  58. Zhang BZ, Zhang PX (1990) Distribution of hydrogen and oxygen isotopes in salt lakes of the Qinghai-Tibetan Plateau, China. Chin J Geochem 4(4):336–346

    Google Scholar 

  59. Liu JD, Zhao YC (1997) Discussion on the stable isotope time-space distribution law of china atmospheric precipitation. Site Investig Sci Technol 3:34–39

    Google Scholar 

  60. Zhou SQ, Kang S, Chen F et al (2013) Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. J Hydrol 491:89–99

    Article  Google Scholar 

  61. Xu CF (1996) The earthquake distribution and the resistivity structure in the Chinese mainland (i). Acta Seismol Sin 9(9):327–334

    Article  Google Scholar 

  62. Jin S, Zhang LT, Jin YJ et al (2012) Crustal electrical structure along the Hezuo-Dajing profile across the northeastern margin of the Tibetan Plateau. Chin J Geophys 55(12):3979–3990

    Google Scholar 

  63. Jin S, Ye GF, Wei WB et al (2007) The electrical structure and fault feature of crust and mantle of western Tibetan Plateau: based on results of magnetotelluric survey along profile Zhada to Quanshuihu. Earth Sci-J China Univ Geosci 32(4):474–480

    Google Scholar 

  64. Wei WB, Jin S, Ye GF et al (2006) Conductivity structure of crust and upper mantle beneath the northern Tibetan Plateau: results of super-wide band magnetotelluric sounding. Chin J Geophys 49(4):1215–1225

    Google Scholar 

  65. Luo Z, Xiao X, Cao Y et al (2001) The Cenozoic mantle magmatism and motion of lithosphere on the north margin of the Tibetan plateau. Sci China 44(1 Suppl):10–17

    Article  Google Scholar 

  66. Chen JS, Zhao X, Wang JY et al (2004) Meaning of the discovery of lacustrine tufa and root-shaped nodule in Badain Jaran Desert for the study on lake recharge. Carsologica Sin 23(4):277–282

    Google Scholar 

  67. Luo JL, Wei XS, Liu X (2010) Impact of provenance and diagenesis on sandstone reservoir quality of the Middle Permian in northern Ordos Basin, China. Geochim Cosmochim Acta 74(12):642

    Google Scholar 

  68. Chen JS, Jiang QN (2015) Research progress of ground water deep circulation. Water Res Protect 6:8–17

    Google Scholar 

  69. Manning CE (2013) Thermodynamic modeling of fluid-rock interaction at mid-crustal to upper-mantle conditions. Rev Mineral Geochem 76(1):135–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Basic Research Program of China (2012CB417005), National Natural Science Foundation of China (51578212), and Fundamental Research Funds for the Central Universities (2014B17514, 2015B24614). The authors thank Tan Hongbing, Zhan Lucheng, and Huang Dewen for their support and considerate discussions. Special thanks to the anonymous reviewers for their critical reviews and supportive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Chen, J., Ge, L. et al. Isotopic and hydrochemical evidence of groundwater recharge in the Hopq Desert, NW China. J Radioanal Nucl Chem 310, 761–775 (2016). https://doi.org/10.1007/s10967-016-4856-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4856-8

Keywords

Navigation