Skip to main content
Log in

Determination of thorium(IV) in real samples by spectrophotometry after micelle-mediated cloud point extraction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive cloud point extraction method for the preconcentration of thorium(IV) prior to spectrophotometric determination was developed. The method was based on the formation of complex of thorium(IV) with quinalizarin at pH 5.0 and mixed micelle-mediated extraction of the complex using cethyltrimethyl ammonium bromide and Triton X-114. The enriched analyte in the surfactant-rich phase was determined spectrophotometrically at 600 nm. The effect of optimal extraction and reaction conditions was studied. Under the optimum conditions, linearity was obeyed over the range of 5.0–100 ng mL−1 and the limit of detection was 1.40 ng mL−1. The proposed method was validated and successfully applied for the determination of thorium(IV) in certified reference materials and real samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang S, Liu P, Zhang B (2005) Thorium resources and their availability (in Cheinese). World Nucl Geosci 22:98–103

    Google Scholar 

  2. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa LK (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem 270:637–640

    Article  CAS  Google Scholar 

  3. Laferriere BD, Maiti TC, Arnquist IJ, Hoppe EW (2015) A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry. Nucl Instr Meth Phys Res 775:93–98

    Article  CAS  Google Scholar 

  4. Deb SB, Saxena MK, Nagar BK, Ramakumar KL (2008) Determination of trace amounts of thorium in a uranium matrix by inductively coupled plasma mass spectrometry and validation of the separation procedure by standard addition and tracer techniques. At Spectrosc 29:39–44

    CAS  Google Scholar 

  5. Shrivastav P, Menon SK, Agrawal YK (2001) Selective extraction and inductively coupled plasma atomic emission spectrophotometric determination of thorium using a chromogenic crown ether. J Radioanal Nucl Chem 250:459–464

    Article  CAS  Google Scholar 

  6. Rastegarzadeh S, Pourreza N, Saeedi I (2010) An optical chemical sensor for thorium (IV) determination based on thorin. J Hazard Mater 173:110–114

    Article  CAS  Google Scholar 

  7. Safavi A, Sadeghi M (2006) Design and evaluation of a thorium(IV) selective optode. Anal Chim Acta 567:184–188

    Article  CAS  Google Scholar 

  8. Ganjali MR, Norouzi P, Faridbod F, Riahi S, Yaftian MR, Zamani A, Matt D (2007) Highly selective and sensitive Th4+-PVC-based membrane sensor based on 2-(diphenylphosphorothioyl)-N′, N′-diphenylacetamide. J Appl Electrochem 37:827–833

    Article  CAS  Google Scholar 

  9. Arida HA, Ahmed MA, El-Saied AM (2003) A novel coated graphite rod Th(IV) ion selective electrode based on thorium oxinate complex and its application. Sensors 3:424–437

    Article  CAS  Google Scholar 

  10. Kadam RB, Mali GG, Mohite BS (2013) Analytical application of poly [dibenzo-18-crown-6] for chromatographic separation of thorium(IV) from uranium(VI) and other elements in glycine medium. J Radioanal Nucl Chem 295:501–511

    Article  CAS  Google Scholar 

  11. Rožmarić M, Ivšić AG, Grahek Z (2009) Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection. Talanta 80:352–362

    Article  Google Scholar 

  12. Mishra DG, Acharya R, Swain KK, Joshi RM, Joshi VM, Verma PC, Hegde AG, Reddy AVR (2012) Determination of thorium concentrations in soil and sand samples using instrumental neutron activation analysis. J Radioanal Nucl Chem 294:333–336

    Article  CAS  Google Scholar 

  13. Shahida S, Ali A, Khan MH (2014) Flow injection on-line spectrophotometric determination of thorium(IV) after preconcentration on XAD-4 resin impregnated with oxytetracycline. J Iran Chem Soc 11:1–8

    Article  CAS  Google Scholar 

  14. Khan MH, Hafeez M, Bukhari SMH, Ali A (2014) Spectrophotometric determination of microamounts of thorium with thorin in the presence of cetylpyridinium chloride as surfactant in perchloric acid. J Radioanal Nucl Chem 301:703–709

    Article  CAS  Google Scholar 

  15. Devi VSA, Reddy VK (2013) 2-Hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone: a new chromogenic reagent for the determination of thorium(IV) and uranium(VI). J Chem. doi:10.1155/2013/697379

    Google Scholar 

  16. Zade AB, Kalbende PP, Upase AB, Belsare GW (2012) Sensitive microspectrophotometric determination of thorium(IV) and uranium (VI) with pyrogallol red in presence of cationic surfactant. J Indian Chem Soc 89:811–822

    CAS  Google Scholar 

  17. Al-Kady AS (2012) Optimized and validated spectrophotometric methods for the determination of trace amounts of uranium and thorium using 4-chloro-N-(2,6-dimethylphenyl)-2- hydroxy-5-sulfamoylbenzamide. Sens Actuators B 166–167:485–491

    Article  Google Scholar 

  18. Kadi MW, El-Shahawi MS (2011) Selective determination of thorium in water using dual-wavelength β-correction spectrophotometry and the reagent 4-(2-pyridylazo)-resorcinol. J Radioanal Nucl Chem 289:345–351

    Article  CAS  Google Scholar 

  19. Guzánm-Mar JL, Hernández-Ramírez A, López-Chuken UJ, López-De-Alba PL, Cerdà V (2011) A multisyringe flow injection method for the determination of thorium in water samples using spectrophotometric detection. J Radioanal Nucl Chem 289:67–73

    Article  Google Scholar 

  20. Chalapathi PV, Subba Rao Y, Jagadeesh M, Prathima B, Sreenath Reddy A, Janardhan Reddy K, Varadareddy A (2011) A chelating reagent, 2, 3, 4-trihydroxy acetophenoneoxime(THAPO) used for selective and sensitive kinetic spectrophotometric determination of thorium(IV) from ores. J Chem Pharm Res 3:223–234

    CAS  Google Scholar 

  21. Zolfonoun E, Salahinejad M (2013) Preconcentration procedure using vortex-assisted liquid–liquid microextraction for the fast determination of trace levels of thorium in water samples. J Radioanal Nucl Chem 298:1801–1807

    Article  CAS  Google Scholar 

  22. Madane NS, Mohite BS (2011) Development of reliable analytical method for extraction and separation of thorium(IV) by Cyanex 272 in kerosene. J Radioanal Nucl Chem 290:649–654

    Article  CAS  Google Scholar 

  23. He L, Jiang Q, Jia Y, Fang Y, Zou S, Yang Y, Liao J, Liu N, Feng W, Luo S, Yang Y, Yang L, Yuan L (2013) Solvent extraction of thorium(IV) and rare earth elements with novel polyaramide extractant containing preorganized chelating groups. J Chem Technol Biotechnol 88:1930–1936

    Article  CAS  Google Scholar 

  24. Mohite BS, Madane NS (2015) Extraction and separation of thorium(IV) using dibenzo-18-crown-6 in xylene. Res J Chem Environ 19:8–14

    CAS  Google Scholar 

  25. Shaeri M, Mostaedi MT, Kelishami AR (2015) Solvent extraction of thorium from nitrate medium by TBP, Cyanex272 and their mixture. J Radioanal Nucl Chem 303:2093–2099

    CAS  Google Scholar 

  26. Kandhro GA, Soylak M, Kazi TG (2014) Solid phase extraction of thorium on multiwalled carbon nanotubes prior to UV–Vis spectrophotometric determination in ore samples. At Spectrosc 35:270–274

    CAS  Google Scholar 

  27. Nilchi A, Dehaghan TS, Garmarodi SR (2013) Solid phase extraction of uranium and thorium on octadecyl bonded silica modified with Cyanex 302 from aqueous solutions. J Radioanal Nucl Chem 295:2111–2115

    Article  CAS  Google Scholar 

  28. Avivar J, Ferrer L, Casas M, Cerdà V (2012) Fully automated lab-on-valve-multisyringe flow injection analysis-ICP-MS system: an effective tool for fast, sensitive and selective determination of thorium and uranium at environmental levels exploiting solid phase extraction. J Anal At Spectrom 27:327–334

    Article  CAS  Google Scholar 

  29. Lin C, Wang H, Wang Y, Zhou L, Liang J (2011) Selective preconcentration of trace thorium from aqueous solutions with Th(IV)-imprinted polymers prepared by a surface-grafted technique. Int J Environ Anal Chem 91:1050–1061

    Article  CAS  Google Scholar 

  30. Abdallah AM, Kabil MA, Akl MA, Ismael DS (2004) Simultaneous preconcentration flotation-separation and spectrophotometric determination of thorium, lanthanum and yttrium in some geological and environmental samples. J Iran Chem Soc 1:79–87

    Article  CAS  Google Scholar 

  31. Shiri S, Delpisheh A, Haeri A, Poornajaf A, Khezeli T, Badkiu N (2011) Floatation-spectrophotometric determination of thorium, using complex formation with eriochrome cyanine R. Anal Chem Insights 6:1–6

    CAS  Google Scholar 

  32. Pourreza N, Parham H, Mirzavand P (2009) Flotation-spectrophotometric determination of trace amounts of thorium. J Chin Chem Soc 56:785–788

    Article  CAS  Google Scholar 

  33. Hosseini MS, Yavari HR (2007) Mutual separation and determination of Th(IV) and U(VI) using arsenazo III as a dye collector reagent by flotation-spectrophotometric method. J Chin Chem Soc 54:731–736

    Article  CAS  Google Scholar 

  34. Ojeda CB, Rojas FS (2012) Separation and preconcentration by cloud point extraction procedures for determination of ions: recent trends and applications. Microchim Acta 177:1–21

    Article  CAS  Google Scholar 

  35. Afkhami A, Madrakian T, Maleki A (2005) Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Anal Biochem 37:162–164

    Article  Google Scholar 

  36. Gholivand MB, Omidi M, Khodadadian M (2012) Cloud point extraction and spectrophotometric determination of uranium (VI) in water samples after mixed micelle-mediated extraction using chromotrope 2R as complexing agent. Croat Chem Acta 85:289–295

    Article  CAS  Google Scholar 

  37. Mortada WI, Ali AZ, Hassanien MM (2013) Mixed micelle-mediated extraction of alizarin red S complexes of Zr(IV) and Hf(IV) ions prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 5:5234–5240

    Article  CAS  Google Scholar 

  38. Constantinou E, Pashalidis I (2011) Thorium determination in water samples by liquid scintillation counting after its separation by cloud point extraction. J Radioanal Nucl Chem 287:261–265

    Article  CAS  Google Scholar 

  39. Amin AS, Kassem MA, Mohammed TY (2015) Utilization of cloud-point extraction for colorimetric determination of tr.ace amounts of thorium(IV) in real samples. RSC Adv 5:52095–52100

    Article  CAS  Google Scholar 

  40. Shariati S, Yamini Y, Zanjani MK (2008) Simultaneous preconcentration and determination of U(VI), Th(IV), Zr(IV) and Hf(IV) ions in aqueous samples using micelle-mediated extraction coupled to inductively coupled plasma-optical emission spectrometry. J Hazard Mater 156:583–590

    Article  CAS  Google Scholar 

  41. Jalbani N, Soylak M, Munshi AB, Kazi TG (2014) Multivariate optimization of parameters for the determination of thorium in rock samples by cloud point extraction coupled to UV–Visible spectrophotometry. Fresenius Environ Bull 23:2304–2309

    CAS  Google Scholar 

  42. Fain VY, Zaitsev BE, Ryabov MA (2007) Tautomerism of metal complexes with quinalizarin. Rus J Coord Chem 33:621–629

    Article  CAS  Google Scholar 

  43. Karami H, Mousavi MF, Yamini Y, Shamsipur M (2006) On-line solid phase extraction and simultaneous determination of hafnium and zirconium by ICP–atomic emission spectroscopy. Microchim Acta 154:221–228

    Article  CAS  Google Scholar 

  44. Gouda AA (2014) Solid-phase extraction using multiwalled carbon nanotubes and quinalizarin for preconcentration and determination of trace amounts of some heavy metals in food, water and environmental samples. Int J Environ Anal Chem 94:1210–1222

    Article  CAS  Google Scholar 

  45. Gouda AA (2014) Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese (II) in water and food samples. Spectrochim Acta A 131:138–144

    Article  CAS  Google Scholar 

  46. Marczenko Z (1986) Separation and spectrophotometric determination of elements. Ellis Horwood, London

    Google Scholar 

  47. Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Prentice-Hall, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman A. Gouda.

Ethics declarations

Conflict of interest

The author wishes to confirm that there are no known conflicts of interest associated with this publication, and no significant financial support was utilized for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hay, S.S.A., Gouda, A.A. Determination of thorium(IV) in real samples by spectrophotometry after micelle-mediated cloud point extraction. J Radioanal Nucl Chem 310, 191–200 (2016). https://doi.org/10.1007/s10967-016-4780-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4780-y

Keywords

Navigation