Skip to main content
Log in

Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Graphene oxide nanoribbons (GONRs) were fabricated by chemically unzipping multiwalled carbon canotubes and were characterized by SEM, TEM, XRD, Raman spectroscopy, FT-IR, TGA and XPS. The prepared GONRs were investigated as adsorbents for the removal of U(VI) ions from aqueous solutions as a function of pH, ionic strength, contact time and temperature. The maximum sorption capacity of U(VI) on GONRs was 394.1 mg g−1, which was much higher than some other carbon-based nanomaterials. The results show that GONRs are promising materials for the removal and enrichment of uranium from large volumes of aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rao TP, Metilda P, Gladis JM (2006) Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  2. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) J Hazard Mater 176:119–124

    Article  CAS  Google Scholar 

  3. Tang Y, Reeder RJ (2009) Geochim Cosmochim Acta 73:2727–2743

    Article  CAS  Google Scholar 

  4. Bruno J, De Pablo J, Duro L, Figuerola E (1995) Geochim Cosmochim Acta 59:4113–4123

    Article  CAS  Google Scholar 

  5. Gu B, Ku Y-K, Jardine PM (2004) Environ Sci Technol 38:3184–3188

    Article  CAS  Google Scholar 

  6. Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094

    Article  CAS  Google Scholar 

  7. Humelnicu D, Blegescu C, Ganju D (2014) J Radioanal Nucl Chem :1–8

  8. Buszewski B, Szultka M (2012) Crit Rev Anal Chem 42:198–213

    Article  CAS  Google Scholar 

  9. Xu J, Li Y, Jing C, Zhang H, Ning Y (2013) J Radioanal Nucl Chem 299:329–336

    Article  Google Scholar 

  10. Chen L, Xu J, Hu J (2012) J Radioanal Nucl Chem 297:97–105

    Article  Google Scholar 

  11. Dubey SP, Dwivedi AD, Sillanpää M, Kwon Y-N, Lee C (2014) RSC Adv 4:46114–46121

    Article  CAS  Google Scholar 

  12. Kim JH, Lee HI, Yeon J-W, Jung Y, Kim JM (2010) J Radioanal Nucl Chem 286:129–133

    Article  CAS  Google Scholar 

  13. Wang M, Qiu J, Tao X, Wu C, Cui W, Liu Q, Lu S (2011) J Radioanal Nucl Chem 288:895–901

    Article  CAS  Google Scholar 

  14. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  15. Fasfous II, Dawoud JN (2012) Appl Surf Sci 259:433–440

    Article  CAS  Google Scholar 

  16. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Chem Eng J 220:45–52

    Article  CAS  Google Scholar 

  17. Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) RSC Adv 3:18952

    Article  CAS  Google Scholar 

  18. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  19. Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N (2014) J Radioanal Nucl Chem. doi:10.1007/s10967-014-3795-5

    Google Scholar 

  20. Sun Y, Yang S, Sheng G, Guo Z, Wang X (2012) J Environ Radioact 105:40–47

    Article  CAS  Google Scholar 

  21. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  22. Sundararajan M, Ghosh SK (2011) J Phys Chem A 115:6732–6737

    Article  CAS  Google Scholar 

  23. Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AH (2014) Nat Chem 6:126–132

    Article  CAS  Google Scholar 

  24. Ma L, Wang J, Ding F (2013) ChemPhysChem 14:47–54

    Article  CAS  Google Scholar 

  25. Zhang HL, Zhang CY, Shi DD (2011) Adv Mater Res 148:1737–1740

    Google Scholar 

  26. Hirsch A (2009) Angew Chem Int Ed 48:6594–6596

    Article  CAS  Google Scholar 

  27. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Nature 458:872–876

    Article  CAS  Google Scholar 

  28. Wong CHA, Pumera M (2014) J Mater Chem C 2:856–863

    Article  CAS  Google Scholar 

  29. Xiao B, Li X, Li X, Wang B, Langford C, Li R, Sun X (2014) J Phys Chem C 118:881–890

  30. Fan J, Shi Z, Tian M, Wang J, Yin J (2012) ACS Appl Mater Interfaces 4:5956–5965

    Article  CAS  Google Scholar 

  31. Wang Y, Shi Z, Yin J (2010) J Phys Chem C 114:19621–19628

    Article  CAS  Google Scholar 

  32. Yu XY, Luo T, Zhang YX, Jia Y, Zhu BJ, Fu XC, Liu JH, Huang XJ (2011) ACS Appl Mater Interfaces 3:2585–2593

    Article  CAS  Google Scholar 

  33. Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  34. Waite T, Davis J, Payne T, Waychunas G, Xu N (1994) Geochim Cosmochim Acta 58:5465–5478

    Article  CAS  Google Scholar 

  35. Ding C, Cheng W, Sun Y, Wang X (2014) Dalton Trans 43:3888–3896

    Article  CAS  Google Scholar 

  36. Cheng H, Zeng K, Yu J (2013) J Radioanal Nucl Chem 298:599–603

    Article  CAS  Google Scholar 

  37. Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y (2014) J Hazard Mater 271:41–49

    Article  CAS  Google Scholar 

  38. Song M, Wang Q, Meng Y (2012) J Radioanal Nucl Chem 293:899–906

    Article  CAS  Google Scholar 

  39. Shao D, Hu J, Wang X (2010) Plasma Process Polym 7:977–985

    Article  CAS  Google Scholar 

  40. Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Appl Surf Sci 320:10–20

    Article  CAS  Google Scholar 

  41. Chen S, Hong J, Yang H, Yang J (2013) J Environ Radioact 126:253–258

    Article  CAS  Google Scholar 

  42. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S (2011) J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 91226108), NSAF (U133025), the Ph.D. Programs Foundation of Ministry of Education of China (Grants No. 20110181120001), the National Fund of China for Fostering Talents in Basic Science (J1210004), and Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense (East China Institute of Technology) (Grants No. RGET1216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Liu or Jun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Z., Gu, Z. et al. Uranium(VI) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes. J Radioanal Nucl Chem 304, 1329–1337 (2015). https://doi.org/10.1007/s10967-015-3981-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3981-0

Keywords

Navigation