Skip to main content
Log in

Method for correcting thermal neutron self-shielding effect for aqueous bulk sample analysis by PGNAA technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method based on internal standard is proposed to correct the thermal neutron self-shielding effect of aqueous samples containing elements with large thermal neutron absorption cross-section using prompt gamma-ray neutron activation analysis. The experiments for determination of boron and cadmium dissolved in water were carried out to validate the method using a setup with a 300 mCi 241Am–Be source and a cylindrical 4 × 4 inch (diameter × height) BGO detector. The results showed the proposed methodology can be used to correct the self-shielding effects for the aqueous samples by prompt gamma neutron activation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Idiri Z, Mazrou H, Amokrane A, Bedek S (2010) Characterization of an Am–Be PGNAA set-up developed for in situ liquid analysis: application to domestic waste water and industrial liquid effluents analysis. Nucl Instrum Methods Phys Res B 268:213–218

    Article  CAS  Google Scholar 

  2. Khelifi R, Amokrane A, Bode P (2007) Detection limits of pollutants in water for PGNAA using Am–Be source. Nucl Instrum Methods Phys Res B 262:329–332

    Article  CAS  Google Scholar 

  3. Naqvi AA, Garwan MA, Nagadi MM, Maslehuddin M, Al-Amoudi OSB, Khateeb-ur-Rehman (2009) Non-destructive analysis of chlorine in fly ash cement concrete. Nucl Instrum Methods Phys Res A 607:446–450

    Article  CAS  Google Scholar 

  4. Naqvi AA, Al-Matouq FA, Khiari FZ, Khateeb-ur-Rehman, Gondal MA, Isab AA (2013) Optimization of a prompt gamma setup for analysis of environmental samples. J Radioanal Nucl Chem 296:215–221

    Article  CAS  Google Scholar 

  5. Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy AVR, Goswami A (2005) A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis. Anal Chim Acta 549:205–211

    Article  CAS  Google Scholar 

  6. Fleming RF (1982) Neutron self-shielding factors for simple geometrics. Int J Appl Radiat Isot 33:1263–1268

    Article  CAS  Google Scholar 

  7. Shakir NS, Jervis RE (2001) Correction factors required for quantitative large volume INAA. J Radioanal Nucl Chem 248:61–68

    Article  CAS  Google Scholar 

  8. Blaauw M (1995) The confusing issue of the neutron capture cross-section to use in thermal neutron self-shielding computations. Nucl Instrum Methods Phys Res A 356:403–407

    Article  CAS  Google Scholar 

  9. Tzika F, Stamatelatos IE (2004) Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code. Nucl Instrum Methods Phys Res B 213:177–181

    Article  CAS  Google Scholar 

  10. Nasrabadi MN, Jalali M, Mohammadi A (2007) Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code. Nucl Instrum Methods Phys Res B 263:473–476

    Article  CAS  Google Scholar 

  11. Blaauw M, Belgya T (2005) Neutron self-shielding correction for prompt gamma neutron activation analysis of large samples. J Radioanal Nucl Chem 265:257–259

    Article  CAS  Google Scholar 

  12. Sueki K, Kobayashi K, Sato W, Nakahara H, Tomizawa T (1996) Nondestructive determination of major elements in a large sample by prompt γ ray neutron activation analysis. Anal Chem 68:2203–2209

    Article  CAS  Google Scholar 

  13. Jia WB, Hei DQ, Cheng C, Zhang HJ, Shan Q (2014) Optimization of PGNAA set-up for the elements detection in aqueous solution. Sci China Technol Sci 57:625–629

    Article  CAS  Google Scholar 

  14. Pinault JL, Gateau C (1989) MOCA: an advanced Monte Carlo code running on microcomputers for spectral responses of neutron-gamma logging tools. Nucl Geophys 3:487–500

    CAS  Google Scholar 

  15. Pinault JL (1990) Some comparisons of spectral responses of neutron-gamma logging tools between the MOCA Monte Carlo code and experimental results. Nucl Geophys 4:443–453

    Google Scholar 

  16. Révay Z, Molnár GL (2003) Standardisation of the prompt gamma activation analysis method. Radiochim Acta 91:361–369

    Article  Google Scholar 

  17. Révay Z, Kennedy G (2012) Application of the k0 method in neutron activation analysis and in prompt gamma activation analysis. Radiochim Acta 100:687–698

    Article  Google Scholar 

Download references

Acknowledgments

This work was support by the National Key Scientific Instrument and Equipment Development Projects (Grant No. 2013YQ40861) and National Natural Science Foundation of China (Grant No. 11375087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqian Hei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Cheng, C., Hei, D. et al. Method for correcting thermal neutron self-shielding effect for aqueous bulk sample analysis by PGNAA technique. J Radioanal Nucl Chem 304, 1133–1137 (2015). https://doi.org/10.1007/s10967-015-3962-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3962-3

Keywords

Navigation