Skip to main content
Log in

Non-destructive detection of particulate radiocesium using a non-woven fabric cartridge filter for rapid preprocessing

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A nondestructive method for monitoring 137Cs in particulate matter in natural water was developed, to expedite preprocessing time. Suspended solids collected on a nonwoven fabric cartridge filter were directly analyzed for 137Cs without preprocessing; a formula was determined for geometric correction of the radiation source in the cartridge. The ratio of the 137Cs radioactivity in the cartridge determined by the nondestructive method to the actual 137Cs radioactivity determined by a destructive method was estimated to be 1.14 for 44 water samples, and this value was also valid for various experimental conditions and soils with various particle size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Battaglia A, Bazzano E, Queirazza G (1984) Centro Informazioni Studi Esperienze, Milan (Italy). http://irpa.icrp.org/irpa6/cdrom/VOL.2/B2_89.pdf. Accessed 20 Dec 2013

  2. Yasutaka T, Kawabe Y, Kusorawa A, Komai T (2012) International symposium on environmental monitoring and dose estimation of residents after accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations. http://www.rri.kyotou.ac.jp/anzen_kiban/outcome/Proceedings_for_Web/Topics_2-17.pdf. Accessed 5 April 2013

  3. Ueda S, Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2013) J Environ Radioact 118:96–104

    Article  CAS  Google Scholar 

  4. Ödman F, Ruth T, Rontér C (1999) Appl Chem 14:301–317

    Google Scholar 

  5. Ödman F, Ruth T, Rodushkin I, Rontér C (2006) Appl Chem 21:2112–2134

    Google Scholar 

  6. Mulligan CN, Davarpanah N, Fukue M, Inoue T (2009) Chemosphere 74:779–786

    Article  CAS  Google Scholar 

  7. Tsuji H, Yasutaka T, Kawabe Y, Onishi T, Komai T (2014) Water Res 60:15–27

    Article  CAS  Google Scholar 

  8. Schaflinger U (1990) Fluid Dyn Res 6:213–249

    Article  Google Scholar 

  9. Wallbrink PJ, Murray AS, Olley JM (1998) Water Resour Res 34:879–887

    Article  CAS  Google Scholar 

  10. Phillips JM, Russell MA, Walling DE (2000) Hydrol Process 14:2589–2602

    Article  Google Scholar 

  11. Galas C, Sansone U, Belli M, Barbizzi S, Fanzutti GP, Kanivets V, Pati A, Piani R, Repetti M, Terzoni C (2006) Voitsekho. J Radioanal Nucl Chem 267:623–629

    Article  CAS  Google Scholar 

  12. Duinker JC, Nolting RF, van der Sloot HA (1979) Neth J Sea Res 13:282–297

    Article  CAS  Google Scholar 

  13. Jouanneau JM, Etcheber H (1980) Estuar Coast Mar Sci 11:701–707

    Article  Google Scholar 

  14. Horowitz AJ (1986) Environ Sci Technol 20:155–160

    Article  CAS  Google Scholar 

  15. Calmet D, Fernandez JM (1990) Cont Shelf Res 10:895–913

    Article  Google Scholar 

  16. Sansone U, Belli M, Voitsekovitch OV, Kanivets VV (1996) Sci Total Environ 186:257–271

    Article  CAS  Google Scholar 

  17. Cho J, Amy G, Pellegrino J (1999) Water Res 33:2517–2526

    Article  CAS  Google Scholar 

  18. Cho J, Amy G, Pellegrino J (2000) J Membr Sci 164:89–110

    Article  CAS  Google Scholar 

  19. Tsuji H, Kondo Y, Suzuki Y, Yasutaka T (2014) J Radioanal Nucl Chem 299:139–147

    Article  CAS  Google Scholar 

  20. Matsunaga T, Ueno T, Amano H, Tkatchenko Y, Kovalyov A, Watanabe M, Onuma Y (1998) J Contam Hydrol 35:101–113

    Article  CAS  Google Scholar 

  21. Wakeman RJ, Hanspal NS, Waghode AN, Nassehi V (2005) Chem Eng Res Des 83:1246–1255

    Article  CAS  Google Scholar 

  22. Yasutaka T, Tsuji H, Kondo Y, Suzuki Y (2013) Bunseki Kagaku 62:499–506 (in Japanese)

    Article  CAS  Google Scholar 

  23. Cooper JA (1970) Nucl Instrum Methods 82:273–277

    Article  CAS  Google Scholar 

  24. The Association of Power Process Industry and Engineering, Japan. Instructions for JIS Z 8901 test powder 1. http://www.appie.or.jp/testpowders/descript/pdf/pamphlet2_1.pdf. 19 (in Japanese) Accessed 15 May 2014

  25. Determination of particle size distributions—Electrical sensing zone method. (ISO 13319:2007) https://www.iso.org/obp/ui/#iso:std:iso:13319:ed-2:v2:en. Accessed 31 Oct 2014

  26. Tsuji H, Kondo Y, Kawashima S, Yasutaka T (2013) APSORC’13: 5th Asia-Pacific symposium on radiochemistry (Japan). Proceedings 328

  27. Gimbert LJ, Haygarth PM, Beckett R, Worsfold PJ (2005) Environ Sci Technol 39:1731–1735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank EAC Corporation, Japan Environment Science Co., Ltd., and Dr. H. Suzuki of Chiba University for conducting the radioactivity analyses; Mr. M. Hatakeyama of EAC Corporation for technical support in dismantling the cartridge filters; Dr. T. Kobayashi and Ms. R. Yamamoto of Chiba University for data reference; and Dr. T. Nishikiori of the National Institute for Environmental Studies for data donation. This study was financially supported by the Japan Science and Technology Agency (through Development of Systems and Technology for Advanced Measurement and Analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Yasutaka.

Appendix

Appendix

See Table A1 and Figure A1.

Table A1 137Cs radioactivity determined by the nondestructive detection and the destructive detection methods. The SS concentration was calculated by dividing the SS weight by the water flow volume
Fig. A1
figure 6

Relationship between the amount of 137Cs detected in the U-8 container in the normal direction (destructive detection) and the amount of 137Cs on the cartridge detected directly (nondestructive detection). Approximate lines with zero intercepts were adopted. Error bars indicate Ge detector counting errors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, H., Kondo, Y., Kawashima, S. et al. Non-destructive detection of particulate radiocesium using a non-woven fabric cartridge filter for rapid preprocessing. J Radioanal Nucl Chem 303, 1803–1810 (2015). https://doi.org/10.1007/s10967-014-3800-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3800-z

Keywords

Navigation