Skip to main content
Log in

Radiation-induced modifications on physico chemical properties of diluted nitric acid solutions within advanced spent nuclear fuel reprocessing

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Within advanced spent nuclear fuel reprocessing, the effects of ionizing radiation on some physico chemical properties of 0.25–0.5 M HNO3 solutions have been studied for the first time, because of the possible influence on both the separation performances and the fluid-dynamics of the extracting system. Irradiations were performed in air up to 100 kGy by two 60Co-sources, with 0.3 and 2.5 kGy/h dose rates, respectively. Density, viscosity, acidity and nitrate ion concentration were measured before and after irradiation. No modifications of these properties in the dose range considered were observed, therefore no significant effects on the fluid-dynamics of the extracting systems are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mincher BJ, Modolo G, Mezyk SP (2009) The effects of radiation chemistry on solvent extraction 1: conditions in acidic solutions and a review of TBP radiolysis. Solvent Extr Ion Exch 27:1–25

    Article  CAS  Google Scholar 

  2. Bourg S, Hill C, Caravaca C, Rhodes C, Ekberg C, Taylor R, Geist A, Modolo G, Cassayre L, Malmbeck R, Harrison M, de Angelis G, Espartero A, Bouvet S, Ouvrier N (2009) ACSEPT—Partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl Eng Des 241:3425–3427

    Google Scholar 

  3. Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66:144–166

    Article  CAS  Google Scholar 

  4. Magill J, Berthou V, Haas D, Galy J, Schenkel R, Wiese HW, Heusener G, Tommasi J, Youinou G (2003) Impact limits of partitioning and transmutation scenarios on nuclear waste isolation times. Nucl Energy 42:263–277

    CAS  Google Scholar 

  5. Kopecky J (1997) Atlas of neutron capture cross sections. Report INDC (NDS)-362, IAEA, Vienna

  6. Panak P, Geist A (2013) Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine n-donor ligands. Chem Rev 113:1199–1236

    Article  CAS  Google Scholar 

  7. Bourg S, Poinssot C, Geist A, Cassayre L, Rhodes C, Ekberg C (2012) Advanced reprocessing developments in Europe: status on European projects ACSEPT and ACTINET-I3. Proc Chem 7:166–171

    Article  CAS  Google Scholar 

  8. Malmbeck R (2011) Advanced fuel cycle options. Energy Proc 7:93–102

    Article  CAS  Google Scholar 

  9. Pikaev AK, Gogolev AV, Shilov VP (1997) Radiation chemistry of aqueous solutions of actinides. Russ Chem Rev 66:763–788

    Article  Google Scholar 

  10. Katsumura Y, Jiang PY, Nagaishi R, Yotsuyanagi T, Ishigure K (1994) γ-Radiolysis study of concentrated nitric acid solutions. J Chem Soc, Faraday Trans 90:93–95

    Article  Google Scholar 

  11. Mincher BJ, Modolo G, Mezyk SP (2010) The effects of radiation chemistry on solvent extraction 4: separation of the trivalent Actinides and considerations for radiation-resistant solvent system. Solvent Extr Ion Exch 28:415–436

    Article  CAS  Google Scholar 

  12. Pikaev AK, Kabakchi SA, Egorov GF (1988) Some radiation chemical aspects of nuclear engineering. Radiat Phys Chem 31:789–803

    CAS  Google Scholar 

  13. Savel’ev YI, Ershova ZV, Vladimirova MV (1967) α-Radiolysis of aqueous solutions of nitric acid. Sov Radiochem 9:221–225

    Google Scholar 

  14. Kazanjian AR, Miner FJ, Brown AK, Hagan PG, Berry JW (1970) Radiolysis of nitric acid solutions: l.E.T Effects. Trans Faraday Soc 66:2192–2198

    Article  CAS  Google Scholar 

  15. Katsumura Y, Jiang PY, Nagaishi R, Oishi T, Ishigure K, Yoshida Y (1991) Pulse radiolysis study of aqueous nitric acid solutions. Formation mechanism, yield, and reactivity of NO3 radical. J Phys Chem 95:4435–4439

    Article  CAS  Google Scholar 

  16. Bhattacharyya PK, Natarajan PR (1991) Radiation chemistry of actinide solutions. In: Freeman AJ, Keller C (eds) Handbook on the Physics Chemistry of the Actinides, vol 13. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  17. Nagaishi R (2001) A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat Phys Chem 60:369–375

    Article  CAS  Google Scholar 

  18. Tripathi SC, Bindu P, Ramanujam A (2001) Studies on the identification of harmful radiolytic products of 30% TBP-n-dodecane- HNO3 by gas liquid chromatography. I. Formation of diluent degradation products and their role in Pu retention behavior. Sep Sci Technol 36:1463–1478

    Article  CAS  Google Scholar 

  19. Krishnamurthy MV, Sampathkumar R (1992) Radiation-induced decomposition of the tributyl phosphate-nitric acid system: role of nitric acid. J Radioanal Nucl Chem 166:421–429

    Article  CAS  Google Scholar 

  20. Tripathi SC, Ramanujam A (2003) Effect of radiation induced physicochemical transformation on density and viscosity of 30% TBP–n-dodecane-HNO3 systems. Sep Sci Technol 38:2307–2326

    Article  CAS  Google Scholar 

  21. Magnusson D, Christiansen B, Malmbeck R, Glatz JP (2009) Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX process. Radiochim Acta 97:497–502

    CAS  Google Scholar 

  22. Taylor JR (1996) An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito

    Google Scholar 

  23. Nash KL, Lumetta GJ (2011) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  24. Aksenenko VM, Murav’ev NS, Taranenko GS (1986) Raman scattering study of nitric acid solutions. J Appl Spectrosc 44:87–91

    Article  CAS  Google Scholar 

  25. Smiechowski M, Stangret J (2008) ATR FT-IR H2O spectra of acidic aqueous solutions. Insights about proton hydration. J Mol Strut 878:104–115

    Article  CAS  Google Scholar 

  26. Mincher BJ, Modolo G, Mezyk SP (2009) Review Article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr Ion Exch 27:579–606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thanks Gammatom Srl and Professor Armando Buttafava of Chemical Department of Università degli Studi di Pavia for the irradiation campaign. This work was funded by the SACSESS European Commission Project (FP7-CP-2013-323282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eros Mossini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossini, E., Macerata, E., Giola, M. et al. Radiation-induced modifications on physico chemical properties of diluted nitric acid solutions within advanced spent nuclear fuel reprocessing. J Radioanal Nucl Chem 304, 395–400 (2015). https://doi.org/10.1007/s10967-014-3556-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3556-5

Keywords

Navigation