Skip to main content
Log in

Separation of curium from americium using composite sorbents and complexing agent solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The EXAm and the AmSel liquid–liquid extraction processes have been used as bases for the development of chromatographic systems for separation of curium(III) from americium(III). The liquid organic phases were replaced by composite sorbents with PAN binding matrix and complexing agent in nitric acid solutions were employed as aqueous phases. The influence of complexing agent and nitric acid concentrations on weight distribution coefficients and separation factor and the kinetics of the actinide uptake were determined in batch experiments with trace amounts of 241Am and 244Cm. The efficiency of Cm(III) separation from Am(III) was evaluated in column experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seaborg GT, James RA, Morgan LO (1949) The New Element Americium (Atomic Number 95), THIN PPR 14 B The Transuranium Elements: Paper No. 22.1, McGraw-Hill Book, New York

  2. Glass RA (1955) J Am Chem Soc 77:807–809

    Article  CAS  Google Scholar 

  3. Choppin GR, Harvey BG, Thompson SG (1956) J Inorg Nucl Chem 2:66–68

    Article  CAS  Google Scholar 

  4. Smith HL, Hoffman DC (1956) J Inorg Nucl Chem 3:243–247

    Article  CAS  Google Scholar 

  5. Thompson GH (1972) Ion Exch Membr 1:87–89

    CAS  Google Scholar 

  6. Billon A (1979) J Radioanal Chem 51:297–305

    Article  CAS  Google Scholar 

  7. Bigelow JE, Benker DE, Chattin FR, King LJ, Knauer JB, Ross RG, Stacy RG, Wiggins JT (1984) Gram-scale separation of curium from americium using ammonium α–hydroxyisobutyrate in high–pressure cation columns. Int Symp Actin Lanthan Sep, Honolulu, pp 16–22

    Google Scholar 

  8. Vobecký M (1986) J Radioanal Nucl Chem Letters 105:335–340

    Article  Google Scholar 

  9. Vobecký M (1989) J Radioanal Nucl Chem Letters 135:165–169

    Article  Google Scholar 

  10. Chartier F, Aubert M, Pilier M (1999) Fresenius J Anal Chem 364:320–327

    Article  CAS  Google Scholar 

  11. Goutelard F, Caussignac C, Brennetot R, Stadekmann G, Gautier G (2009) J Radioanal Nucl Chem 282:669–675

    Article  CAS  Google Scholar 

  12. Fuger J (1958) J Inorg Nucl Chem 5:332–338

    Article  CAS  Google Scholar 

  13. Hale WH, Lowe JT (1969) Inorg Nucl Chem Letters 4:363–368

    Article  Google Scholar 

  14. Adar S, Sjoblom RK, Barnes RF, Fiels PR (1963) J Inorg Nucl Chem 25:447–452

    Article  CAS  Google Scholar 

  15. Kraak W, van der Heijden WA (1966) J Inorg Nucl Chem 28:221–224

    Article  CAS  Google Scholar 

  16. Morrow RJ (1966) Talanta 13:1265–1274

    Article  CAS  Google Scholar 

  17. Lebedev IA, Myasoedov BF, Guseva LI (1974) J Radioanal Chem 21:259–266

    Article  CAS  Google Scholar 

  18. Osaka M, Koyama S, Mitsugashira T (2004) J Nucl Sci Technol 41:907–914

    Article  CAS  Google Scholar 

  19. Suzuki T, Otake K, Sato M, Ikeda A, Aida M, Fujii Y, Hara M, Mitsugashira T, Ozawa M (2007) J Radioanal Nucl Chem 272:257–262

    Article  CAS  Google Scholar 

  20. Koyama S, Ozawa M, Suzuki T, Fujii Y (2006) J Nucl Sci Technol 43:681–689

    Article  CAS  Google Scholar 

  21. Nogami M, Fujii Y, Sugo T (1996) J Radioanal Nucl Chem 203:109–117

    Article  CAS  Google Scholar 

  22. Stephanou SE, Penneman RA (1952) J Am Chem Soc 74:3701–3702

    Article  CAS  Google Scholar 

  23. Moore FL (1963) Anal Chem 35:715–719

    Article  CAS  Google Scholar 

  24. Coleman JS, Keenan TK, Jones LH, Carnall WT, Penneman RA (1963) Inorg Chem 2:58–61

    Article  CAS  Google Scholar 

  25. Shehee T, Martin LR, Zalupski PR, Nash KL (2010) Separ Sci Technol 45:1743–1752

    Article  CAS  Google Scholar 

  26. Horwitz EP, Bloomquist CAA, Harvey HW, Cohen D, Basile LJ (1965) ANL-6998

  27. Moore FL (1966) Anal Chem 38:510–512

    Article  CAS  Google Scholar 

  28. Appelman EH, Diamond H, Horwitz EP, Sullivan JC (1991) Radiochim Acta 55:61–64

    CAS  Google Scholar 

  29. Donnet L, Adnet JM, Faure N, Bros P, Brossard P, Josso F, Development of the SESAME process. SFEN, ENS 5th International Conference on Recycling, Conditioning and Disposal, Nice, 25–28 October 1998

  30. Martin LR, Mincher BJ, Schmitt NC (2009) J Radioanal Nucl Chem 282:523–526

    Article  CAS  Google Scholar 

  31. Mincher BJ, Martin LR, Schmitt NC (2008) Inorg Chem 47:6984–6989

    Article  CAS  Google Scholar 

  32. Stokely JR, Moore FL (1967) Anal Chem 39:994–997

    Article  CAS  Google Scholar 

  33. Fardy JJ, Buchanan JM (1976) J Inorg Nucl Chem 38:149–154

    Article  CAS  Google Scholar 

  34. Hulet EK (1964) J Inorg Nucl Chem 26:1721–1727

    Article  CAS  Google Scholar 

  35. Moore FL (1968) Anal Chem 40:2130–3133

    Article  CAS  Google Scholar 

  36. Runde WH, Mincher BJ (2011) Chem Rev 111:5723–5741

    Article  CAS  Google Scholar 

  37. Horwitz EP, Bloomquist CAA, Sauro LJ, Henderson DJ (1966) J Inorg Nucl Chem 28:2313–2324

    Article  CAS  Google Scholar 

  38. Mason GW, Bollmeier AF, Peppard DF (1970) J Inorg Nucl Chem 32:1011–1022

    Article  CAS  Google Scholar 

  39. Horwitz EP, Orlandini KA, Bloomquist CAA (1966) Inorg Nucl Chem Letters 2:87–91

    Article  CAS  Google Scholar 

  40. Modolo G, Kluxen P, Geist A (2010) Radiochim Acta 98:193–201

    Article  CAS  Google Scholar 

  41. Kurosaki H, Clark SB (2011) Radiochim Acta 99:65–69

    Article  CAS  Google Scholar 

  42. Maryutina TA, Litvina MN, Malikov DA, Spivakov BY, Myasoedov BF, Lecomte M, Hill C, Madic C (2004) Radiochemistry 46:596–602

    Article  CAS  Google Scholar 

  43. Myasoedov BF, Maryutina TA, Litvina MN, Malikov DA, Kulyako YM, Spivakov BY, Hill C, Adnet J-M, Lecomte M, Madic C (2005) Radiochim Acta 93:9–15

    Article  CAS  Google Scholar 

  44. Warin D, Recent progress in Advanced Actinide Recycling Processes. OECD NEA 11th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, San Francisco, 1–4 November 2010

  45. Charbonnel M-C, Berthon C, Berthon L, Boubals N, Burdet F, Duchesne M-T, Guilbaud P, Mabille N, Petit S, Zorz N (2012) Procedia Chem 7:20–26

    Article  CAS  Google Scholar 

  46. Wagner C, Müllich U, Panak PJ, Geist A, AmSel, a new system for extracting only americium from PUREX raffinate. Sustainable Nuclear Energy Conference, Manchester, 9–11 April 2014

  47. Šebesta F (1997) J Radioanal Nucl Chem 220:77–88

    Article  Google Scholar 

  48. Mann NR, Todd TA, Tranter TJ, Šebesta F (2002) J Radioanal Nucl Chem 254:41–45

    Article  CAS  Google Scholar 

  49. Tranter TJ, Mann NR, Todd TA, Šebesta F (2003) Czech J Phys 53:A589–A594

    Article  CAS  Google Scholar 

  50. Kameník J, Šebesta F (2006) Czech J Phys 56:D493–D500

    Article  Google Scholar 

  51. Šul’aková J, John J, Šebesta F (2006) Czech J Phys 56:D589–D597

    Article  Google Scholar 

  52. Šebesta F, Kameník J (2010) J Radioanal Nucl Chem 283:845–849

    Article  Google Scholar 

  53. Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Solvent Extr Ion Exch 23:319–344

    Article  CAS  Google Scholar 

  54. Št’astná K, Fiala V, John J (2010) J Radioanal Nucl Chem 268:735–739

    Google Scholar 

  55. Van Hecke K, Modolo G (2004) J Radioanal Nucl Chem 261:269–275

    Article  Google Scholar 

  56. Lewis FW, Harwood LM, Hudson MJ, Drew GB, Wilden A, Sypula M, Modolo G, Vu T-H, Simonin J-P, Vidick G, Bouslimani N, Desreux JF (2012) Procedia Chem 7:231–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Grant Agency of the Czech Technical University in Prague, grants No. SGS11/071/OHK4/1T/14 and SGS12/199/OHK4/3T/14, and the Ministry of the Interior of the Czech Republic, grant No. VG20132015132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Št’astná.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Št’astná, K., John, J., Šebesta, F. et al. Separation of curium from americium using composite sorbents and complexing agent solutions. J Radioanal Nucl Chem 304, 349–355 (2015). https://doi.org/10.1007/s10967-014-3544-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3544-9

Keywords

Navigation