Skip to main content
Log in

Molybdenum isotope fractionation in ion exchange reaction by using anion exchange chromatography

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The isotope fractionation of Mo(VI) species using benzimidazole-type anion-exchange resins embedded in high-porous silica beads was investigated in various HCl solutions ranging in concentration from 0.1 to 11.2 M (M = mol/dm3) at 298 K. As a result, the plots of the slope coefficients of Mo(VI) species against the corresponding b values, which are parameter of the adsorbent–adsorbate relative affinity in the adsorption process, were found to be a good linear relationship and the isotope fractionation coefficients of Mo(VI) species were also obtained by using the isotope fractionation curve of Mo(VI) species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heeg MJ, Jurisson SS (1999) The role of inorganic chemistry in the development of radiometal agents for cancer therapy. Acc Chem Res 32:1053–1060

    Article  CAS  Google Scholar 

  2. Nagai Y, Hatsukawa Y (2009) Production of 99Mo for nuclear medicine by 100Mo(n, 2n)99Mo. J Phys Soc Jpn 78:1–4

    Article  Google Scholar 

  3. Kimura A, Sato Y, Tanase M, Tsuchida K (2011) Development of high density MoO3 pellets for production of 99Mo medical isotope. IOP Conf Ser Mater Sci Eng 18:1–4

    Google Scholar 

  4. Gagnon K, Bénard F, Kovacs M, Ruth TJ, Schaffer P, Wilson JS, McQuarrie SA (2011) Cyclotron production of 99mTc: experimental measurement of the 100Mo(p,x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nucl Med Biol 38:907–916

    Article  CAS  Google Scholar 

  5. Barling J, Anbar AD (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217:315–329

    Article  CAS  Google Scholar 

  6. Golgberg T, Archer C, Vance D, Poulton SW (2009) Mo isotope fractionation during adsorption to Fe(oxyhydr)oxides. Geochim Cosmochim Acta 73:6502–6516

    Article  Google Scholar 

  7. Kashiwabara T, Takahashi Y, Tanimizu M (2009) A XAFS study on the mechanism of isotopic fractionation of molybdenum during its adsorption on ferromanganese oxides. Geochem J 43:e31–e36

    Article  CAS  Google Scholar 

  8. Ban Y, Aida M, Nomura M, Fujii Y (2002) Zinc isotope separation by ligand exchange chromatography using cation exchange resin. J Ion Exch 13:46–52

    Article  CAS  Google Scholar 

  9. Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J Am Chem Soc 118:3676–3680

    Article  CAS  Google Scholar 

  10. Ding X, Nomura M, Suzuki T, Sugiyama Y, Kaneshiki T, Fujii Y (2006) Chromatographic zinc isotope separation by phenol formaldehyde benzo crown resin. J Chromatogr A 1113:182–185

    Article  CAS  Google Scholar 

  11. Ding X, Nomura M, Suzuki T, Fujii Y (2010) Zinc isotope effects by chromatographic chelating exchange resin. Prog Nucl Energy 52:164–167

    Article  CAS  Google Scholar 

  12. Hayasaka K, Kaneshiki T, Nomura M, Suzuki T, Fujii Y (2008) Calcium ion selectivity and isotope effects studied by using benzo-18-crown-6 resins. Prog Nucl Energy 50:510–513

    Article  CAS  Google Scholar 

  13. Ismail IM, Nomura M, Fujii Y (1998) Isotope effects of europium in ligand exchange system and electron exchange system using ion-exchange displacement chromatography. J Chromatogr A 808:185–191

    Article  CAS  Google Scholar 

  14. Ismail IM, Fukami A, Nomura M, Fujii Y (2000) Anomaly of 155Gd and 157Gd isotope effects in ligand exchange reactions observed by ion exchange chromatography. Anal Chem 72:2841–2845

    Article  CAS  Google Scholar 

  15. Ismail IM, Ibrahim M, Aly HF, Nomura M, Fujii Y (2011) Chromatographic separation of neodymium isotopes by using chemical exchange process. J Chromatogr A 1218:2923–2928

    Article  CAS  Google Scholar 

  16. Kim SH, Aida M, Nomura M, Rifaid MN, Fujii Y (2000) Iron isotope effects studied by means of anion exchange redox chromatography. J Ion Exch 11:26–31

    Article  CAS  Google Scholar 

  17. Maréchal C, Albaréde F (2002) Ion-exchange fractionation of copper and zinc isotopes. Geochim Cosmochim Acta 66:1499–1509

    Article  Google Scholar 

  18. Matin MDA, Nomura M, Fujii Y, Chen J (1998) Isotope effects of copper in ligand-exchange system observed by ion-exchange displacement chromatography. Sep Sci Technol 33:1075–1087

    Article  CAS  Google Scholar 

  19. Nomura M, Higuchi N, Fujii Y (1996) Mass dependence of uranium isotope effects in the U(IV)–U(VI) exchange reaction. J Am Chem Soc 118:9127–9130

    Article  CAS  Google Scholar 

  20. Suzuki T, Nomura M, Fujii Y, Ikeda-Ohno A, Takaoka T, Oguma K (2010) Zinc isotope fractionation in anion exchange in hydrochloric acid solution. J Ion Exch 21:328–333

    Google Scholar 

  21. Olazabal MA, Orive MM, Fernández LA, Madariaga JM (1992) Selective extraction of vanadium(V) from solutions containing molybdenum(VI) by ammonium salts dissolved in toluene. Solvent Extr Ion Exch 10:623–635

    Article  CAS  Google Scholar 

  22. Högfeldt E (1982) Stability constants of metal–ion complexes part A: inorganic ligands. Pergamon Press, Oxford

    Google Scholar 

  23. Tachibana Y, Nomura M, Suzuki T (in preparation) Molybdenum isotope fractionation in redox reaction by using anion exchange chromatography

  24. Suzuki T, Kanzaki C, Nomura M, Fujii Y (2004) Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer. Rev Sci Instrum 75:1931–1933

    Article  CAS  Google Scholar 

  25. Slejko FL (1985) Adsorption technology: a step-by-step approach to process evaluation and application. Mercel Dekker, New York

    Google Scholar 

  26. Wang J, Zhou Y, Li A, Xu L (2010) Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. J Hazard Mater 176:1018–1026

    Article  CAS  Google Scholar 

  27. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Grant-in-Aid for Challenging Exploratory Research (KAKENHI No. 24656567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachibana, Y., Yamazaki, Y., Nomura, M. et al. Molybdenum isotope fractionation in ion exchange reaction by using anion exchange chromatography. J Radioanal Nucl Chem 303, 1429–1434 (2015). https://doi.org/10.1007/s10967-014-3510-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3510-6

Keywords

Navigation