Skip to main content
Log in

Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Studies on removal of U(VI) and Th(IV) from aqueous solution have been carried out by ultrafiltration (UF) and dendrimer assisted ultrafiltration (DAUF) using regenerated cellulose acetate membrane and PAMAM [poly(amido)amine] dendrimer chelating agent. In UF, the U(VI) and Th(IV) are removed from aqueous solution by adsorption/mass deposition on the membrane at pH > 4. In DAUF, the water soluble PAMAM dendrimer chelating agent effectively concentrates these metal ions in retentate thereby preventing the mass deposition on membrane. At acidic pH (≤3), the binding of metal ions with PAMAM dendrimer is very weak and hence PAMAM can be regenerated and reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rana D, Matsuura T, Kassim MA, Ismail AF (2013) Desalination 321:77–92

    Article  CAS  Google Scholar 

  2. Pabby AK (2008) Membr Technol 11:9–13

    Article  Google Scholar 

  3. Savage N, Diallo MS (2005) J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  4. Trznadel GZ (2003) J Membr Sci 225:25–39

    Article  Google Scholar 

  5. Trznadel GZ, Khayet M (2012) Membrane in nuclear science and technology: membrane modification as a tool for performance improvement, membrane modification: technology and applications. CRC Press, Boca Raton, FL, ch.1 1-19

    Google Scholar 

  6. Saucer NN, Ehler SD, Duran BL (2004) J Environ Engine 130:585–588

    Article  Google Scholar 

  7. Trznadel GZ, Harasimowicz M (2002) Desalination 144:207–212

    Article  Google Scholar 

  8. Smith BF, Gibson RR, Jarvinen GD, Robinson TW, Schroeder NC, Stalnaker ND (1998) J Radioanal Nucl Chem 234:225–229

    Article  CAS  Google Scholar 

  9. Novikov AP, Shkinev VM, Spivakov BY, Myasoedov BF, Geckeler KE, Bayer E (1989) Radiochim Acta 46:35–37

    CAS  Google Scholar 

  10. Novikov A, Korpusov S, Zhou RN, Geckeler KE (1993) Chem Tech 45:464–466

    CAS  Google Scholar 

  11. Korpusov SG, Novikov AP, Shkinev VM (1992) Radiochem 34:1–135

    Google Scholar 

  12. Geckeler KE, Volchek K (1996) Environm Sci Technol 30:725–734

    Article  CAS  Google Scholar 

  13. Geckeler KE, Shkinev VM, Spivakov BY (1988) Sep Purif Methods 17:105–140

    Article  CAS  Google Scholar 

  14. Bisset W, Jacobs H, Koshti N, Stark P, Gopalan A (2003) React Funct Polym 55:109–119

    Article  CAS  Google Scholar 

  15. Villoslada IM, Rivas BL (2003) J Membr Sci 215:195–202

    Article  Google Scholar 

  16. Gerstmann UC, Lierse C, Geckeler KE (2001) Radiochim Acta 89:377–385

    CAS  Google Scholar 

  17. Dambies L, Jaworska A, Trznadel GZ, Sartowska BJ (2010) J Hazard Mater 178:988–993

    Article  CAS  Google Scholar 

  18. Chmielewski AG, Harasimowicz M (1995) Separ Sci Tech 30:1779–1789

    Article  CAS  Google Scholar 

  19. Ramachandhran V, Samanta SK, Misra BM (1998) J Radioanal Nucl Chem Letter 237:121–124

    Article  CAS  Google Scholar 

  20. Frechet MJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. ISBNs: 0-471-63850-1

  21. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA, Johnson JH (2004) Langmuir 20:2640–2651

    Article  CAS  Google Scholar 

  22. Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Environ Sci Technol 39:1366–1377

    Article  CAS  Google Scholar 

  23. Savvin SB (1961) Talanta 8:673–685

    Article  CAS  Google Scholar 

  24. Zaghbani N, Hafiane A, Dhahbi M (2008) Desalination 222:348–356

    Article  CAS  Google Scholar 

  25. Lia X, Zenga GM, Huanga JH, Zhanga C, Fanga YY, Qua YH, Luoa F, Lina D, Liua HL (2009) J Member Sci 337:92–97

    Article  Google Scholar 

  26. Kang MJ, Han BE, Hahn PS (2002) Environ Eng Res 7:149–157

    Article  Google Scholar 

  27. Scierz A, Zanker H (2009) Environ Pollut 157:1088–1094

    Article  Google Scholar 

  28. Khazaei Y, Faghihian H, Kamali M (2011) J Radioanal Nucl Chem 289:529–536

    Article  CAS  Google Scholar 

  29. Anirudhan TS, Rejeena SR (2011) Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  30. Giblin M, Batts BD, Swaine DJ (1981) Geochim Cosmochim Acta 45:699–709

    Article  CAS  Google Scholar 

  31. Elimelech M, Zhu X, Childress AE, Hong S (1997) J Membr Sci 127:101–109

    Article  CAS  Google Scholar 

  32. Reguillon AF, Lebuzit G, Murat D, Foos J, Mansour C, Draye M (2008) Water Res 42:1160–1166

    Article  Google Scholar 

  33. Neetika R (2011) Thermodynamics of complexation of actinides and lanthanides with ligand revalent to environmental and separation science, Ph.D Thesis

  34. Meinrath G (1997) J Radioanal Nucl Chem 224:119–226

    Article  CAS  Google Scholar 

  35. Kato Y, Meinrath G, Kimura T, Yoshida Z (1994) Radiochim Acta 64:107–111

    CAS  Google Scholar 

  36. Zavodska L, Kosorinova E, Scerbakova L, Lesny J (2008) Environmental chemistry of uranium. HV ISSN 1418-7108: HEJ Manuscript No: ENV-081221-A 1-18

  37. Skirrow RG, Jaireth S, Huston DL, Bastrakov EN, Schofield A, vander Wielen SE, Barnicoat AC (2009) Uranium mineral systems: processes, exploration criteria and a new deposit framework. Geoscience Australia Record 20

  38. Plancque G, Moulin V, Toulhoat P, Moulin C (2003) Anal Chim Acta 478:11–22

    Article  CAS  Google Scholar 

  39. Collins RN, Kinsela AS (2010) Chemosphere 79:763–771

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ilaiyaraja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilaiyaraja, P., Deb, A.K.S. & Ponraju, D. Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J Radioanal Nucl Chem 303, 441–450 (2015). https://doi.org/10.1007/s10967-014-3462-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3462-x

Keywords

Navigation