Skip to main content
Log in

Removal of thorium from aqueous solution by ordered mesoporous carbon CMK-3

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The ability of ordered mesoporous carbon CMK-3 has been explored for the removal and recovery of thorium from aqueous solutions. The textural properties of CMK-3 were characterized using small-angle X-ray diffraction and N2 adsorption–desorption, and the BET specific surface area, pore volume and the pore size were 1143.7 m2/g, 1.10 cm3/g and 3.4 nm. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The CMK-3 showed the highest thorium sorption capacity at initial pH of 3.0 and contact time of 175 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, △G°(298 K), △H° and △S° were determined to be -0.74 kJ·mol−1, 9.17 kJ·mol−1 and 33.24 J·mol−1·K−1, respectively, which demonstrated the sorption process of CMK-3 towards Th(IV) was feasible, spontaneous and endothermic in nature. The adsorbed CMK-3 could be effectively regenerated by 0.02 mol/L HCl solution for the removal and recovery of Th(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Syed HS (1999) J Radional Nucl Chem 241:11–14

    Article  CAS  Google Scholar 

  2. Khazaei Y, Faghihian H, Kamali M (2011) J Radioanal Nucl Chem 289:529–536

    Article  CAS  Google Scholar 

  3. Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  4. Sato T (2008) Solvent Extr Res Dev, Jpn 15:61–69

    CAS  Google Scholar 

  5. Bayyari MA, Nazal MK, Khalili FA (2010) J Saudi Chem Soc 14:311–315

    Article  CAS  Google Scholar 

  6. ElSweify FH, Shehata MKK, ElShazly EAA (1995) J Radioanal Nucl Chem 198:77–87

    Article  CAS  Google Scholar 

  7. Talip Z, Eral M, Hicsonmez U (2009) J Environ Radioact 100:139–143

    Article  CAS  Google Scholar 

  8. Zhang HX, Dong Z, Tao ZY (2006) Colloids Surf A 278:46–52

    Article  CAS  Google Scholar 

  9. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D (2008) Appl Clay Sci 41:17–23

    Article  CAS  Google Scholar 

  10. Baybas D, Ulusoy U (2011) Appl Clay Sci 51:138–146

    Article  CAS  Google Scholar 

  11. Guerra DL, Viana RR, Airoldi C (2009) J Hazard Mater 168:1504–1511

    Article  CAS  Google Scholar 

  12. Guerra DL, Viana RR, Airoldi C (2009) J Braz Chem Soc 20:1164–1174

    Article  CAS  Google Scholar 

  13. Guerra DL, Viana RR, da Costa LP, Airoldi C (2012) J Phys Chem Solids 73:142

    Article  CAS  Google Scholar 

  14. Tsuruta T (2004) Water Air Soil Poll 159:35–47

    Article  CAS  Google Scholar 

  15. Kutahyali C, Eral M (2010) J Nucl Mater 396:251–256

    Article  Google Scholar 

  16. Kaygun AK, Akyil S (2007) J Hazard Mater 147:357–362

    Article  CAS  Google Scholar 

  17. Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260:115–118

    Article  CAS  Google Scholar 

  18. Anirudhan TS, Rejeena SR (2011) Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  19. Lu AH, Schüth F (2006) Adv Mater 18:1793–1805

    Article  CAS  Google Scholar 

  20. Kruk M, Jaroniec M, Kim TW, Ryoo R (2003) Chem Mater 15:2815–2823

    Article  CAS  Google Scholar 

  21. Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R (2003) Chem Mater 15:3300–3307

    Article  CAS  Google Scholar 

  22. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169–172

    Article  CAS  Google Scholar 

  23. Lei ZB, Bai SY, Xiao Y, Dang LQ, An LZ, Zhang GN, Xu Q (2008) J Phys Chem C 112:722–731

    Article  CAS  Google Scholar 

  24. Peng X, Cao DP, Wang WC (2009) Langmuir 25:10863–10872

    Article  CAS  Google Scholar 

  25. Vinu A, Hartmann M (2005) Catal Today 102–103:189–196

    Article  Google Scholar 

  26. Guo Z, Zhu G, Gao B, Zhang DL, Tian G, Chen Y, Zhang WW, Qiu SL (2005) Carbon 43:2344–2351

    Article  CAS  Google Scholar 

  27. Haque E, Khan NA, Talapaneni SN, Vinu A, Jegal J, Jhung SH (2010) Bull Kor Chem Soc 31:1638–1642

    Article  CAS  Google Scholar 

  28. Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian VV (2007) J Mater Chem 17:1819–1825

    Article  CAS  Google Scholar 

  29. Baniamerian MJ, Moradi SE, Noori A, Salahi H (2009) Appl Surf Sci 256:1347–1354

    Article  CAS  Google Scholar 

  30. Wu ZX, Webley PA, Zhao DY (2010) Langmuir 26:10277–10286

    Article  CAS  Google Scholar 

  31. Nie WB, Zhang ZB, Cao XH, Liu YH, Liang P (2013) J Radioanal Nucl Chem 295:663–670

    Article  CAS  Google Scholar 

  32. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Li Q (2012) Chem Eng J 198–199:246–253

    Article  Google Scholar 

  33. Lee JS, Joo SH, Ryoo R (2002) J Am Chem Soc 124:1156–1157

    Article  CAS  Google Scholar 

  34. Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Carbon 44:530–536

    Article  CAS  Google Scholar 

  35. Pickett G (1945) J Am Chem Soc 30:1958–1962

    Article  Google Scholar 

  36. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  37. Zhang F, Meng Y, Gu D, Yan Y, Yu C, Tu B, Zhao D (2005) J Am Chem Soc 127:13508–13509

    Article  CAS  Google Scholar 

  38. Aytas S, Yurtlu M, Donat R (2009) J Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  39. Hazer O, Kartal Ş (2010) Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  40. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  41. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) J Hazard Mater 190:916–921

    Article  CAS  Google Scholar 

  42. Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho J, Correia M (2005) Colloids Surf A 252:231–236

    Article  CAS  Google Scholar 

  43. Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  44. Anirudhan TS, Divya L, Suchithra PS (2009) J Environ Manage 90:549–560

    Article  CAS  Google Scholar 

  45. Donat RJ (2009) Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by National Natural Science Foundation of China (Grant Nos. 21101024, 21201033), Key Project of Chinese Ministry of Education (Grant No. 211086), Natural Science Foundation of Jiangxi Province (Grant Nos. 20114BAB203002, 20122BAB203012), China Postdoctoral Science Foundation (Grant No. 20110490857), and Project of Jiangxi Provincial Department of Education (Grant Nos. GJJ13452), and the Open Project Foundation of the Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense of China (Grant No. RGET1218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-xuan Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zb., Zhou, Yd., Liu, YH. et al. Removal of thorium from aqueous solution by ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 302, 9–16 (2014). https://doi.org/10.1007/s10967-014-3304-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3304-x

Keywords

Navigation