Skip to main content
Log in

Parameter optimization and experiment verification for a beta radioluminescence nuclear battery

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In a beta radioluminescence nuclear battery, the beta energy is converted to light with the phosphor material, and then to electricity via photovoltaic cells. A method to optimize the thickness of phosphor layer is established in this study; the match between the luminescence spectrum and the photovoltaic cell is analyzed. The optimal parameters and output performance of the nuclear battery based on a sandwich-structure 147Pm/ZnS:Cu/photovoltaic cell are determined with the MCNP, transport theory of light, and detailed balance limit of efficiency. The battery prototypes are fabricated and tested, and the experimental optimal thickness matches that of the theoretical result well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu YP, Tang XB, Xu ZH, Hong L, Wang P, Chen D (2014) Optimization and temperature effects on sandwich betavoltaic microbattery. Sci China Technol Sci 57(1):14–18. doi:10.1007/s11431-013-5413-0

    Article  CAS  Google Scholar 

  2. Tang XB, Liu YP, Ding D, Chen D (2012) Optimization design of GaN betavoltaic microbattery. Sci China Technol Sci 55(3):659–664. doi:10.1007/s11431-011-4739-8

    Article  CAS  Google Scholar 

  3. Cress CD, Redino CS, Landi BJ, Raffaelle RP (2008) Alpha-particle-induced luminescence of rare-earth-doped Y2O3 nanophosphors. J Solid State Chem 181(8):2041–2045. doi:10.1016/j.jssc.2008.04.024

    Article  CAS  Google Scholar 

  4. Walko RJ, Ashley CS, Brinker CJ, Reed ST (1990) Electronic and photonic power applications. The radioluminescent lighting technology transfer conference

  5. Sims PE, Dinetta LC, Barnett AM (1994) High efficiency GaP power conversion for Betavoltaic applications. In: 13th Space photovoltaic research and technology conference, vol 1, pp 373-382

  6. Sychov M, Kavetsky A, Yakubova G, Walter G, Yousaf S, Lin Q, Chan D, Socarras H (2008) Alpha indirect conversion radioisotope power source. Appl Radiat Isot 66(2):173–177. doi:10.1016/j.apradiso.2007.09.004

    Article  CAS  Google Scholar 

  7. Prelas MA, Charlson EJ, Charlson EM, Meese J, Popovici G, Stacy T (1993) Diamond photovoltaic energy conversion. Second international conference on the application of diamond films and related materials

  8. Prelas MA, Popovici G, Khasawinah S, Sung J (1995) In: Prelas MA, Gielisse P, Popovici G, Spitsyn BV, Stacy T (ed) Wide band-gap photovoltaics, Kluwer Academic Publishers, Dordrecht

  9. Schott RJ (2013) Photon intermediate direct energy conversion using a 90Sr beta source. Nucl Technol 181(2):349–353

    CAS  Google Scholar 

  10. Weaver CL (2012) PIDECα: photon intermediate direct energy conversion using the alpha emitter polonium-210. University of Missouri–Columbia

  11. Prelas MA, Boody FP, Miley GH, Kunze JF (1988) Nuclear driven flashlamps. Laser Part Beams 6(1):25–62. doi:10.1017/S0263034600003803

    Article  CAS  Google Scholar 

  12. Bower KE, Barbanel YA, Shreter YG, Bohnert GW (2002) Polymers, phosphors, and voltaics for radioisotope microbatteries. CRC Press, Boca Raton, London, New York, Washington D.C

    Google Scholar 

  13. Smith WJ (1966) Modern optical engineering. McGraw-Hill, New York

    Google Scholar 

  14. Aronson JR, Emslie AG (1973) Spectral reflectance and emittance of particulate materials. 2: application and results. Appl Opt 12(11):2573–2584. doi:10.1364/AO.12.002573

    Article  CAS  Google Scholar 

  15. Nelson J (2003) The physics of solar cells. Imperial College, London

    Book  Google Scholar 

  16. Guo H, Lal A (2003) Nanopower betavoltaic microbatteries. In: Proceedings of 12th International conference on transducers, solid-state sensors, actuators and microsystems. doi:10.1109/SENSOR.2003.1215247

  17. Katz L, Penfold AS (1952) Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Rev Mod Phys 24(1):28. doi:10.1103/RevModPhys.24.28

    Article  CAS  Google Scholar 

  18. Qin HF, Guo TL (2008) Preparation of tetrapod-shaped ZnO nanomaterial field emission cathodes by deposition method. Acta Phys Sin 57(2):1224–1228. doi:10.7498/aps.57.1224

    CAS  Google Scholar 

  19. Raybould D, Morris DG, Cooper GA (1979) A new powder metallurgy method. J Mater Sci 14(10):2523–2526. doi:10.1007/BF00737047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the National Natural Science Foundation of China (Grant No. 11205088), the Aeronautical Science Foundation of China (Grant No. 2012ZB52021), the Fundamental Research Funds for the Central Universities, and the Foundation of Graduate Innovation Center in NUAA (Grant No. kfjj130125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, L., Tang, XB., Xu, ZH. et al. Parameter optimization and experiment verification for a beta radioluminescence nuclear battery. J Radioanal Nucl Chem 302, 701–707 (2014). https://doi.org/10.1007/s10967-014-3271-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3271-2

Keywords

Navigation