Skip to main content
Log in

Reduced dose uncertainty in MRI-based polymer gel dosimetry using parallel RF transmission with multiple RF sources

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, we present the feasibility of using a parallel RF transmit with multiple RF sources imaging method (MultiTransmit imaging) in polymer gel dosimetry. Image quality and B1 field homogeneity was statistically better in the MultiTransmit imaging method than in conventional single source RF transmission imaging method. In particular, the standard uncertainty of R 2 was lower on the MultiTransmit images than on the conventional images. Furthermore, the MultiTransmit measurement showed improved dose resolution. Improved image quality and B1 homogeneity results in reduced dose uncertainty, thereby suggesting the feasibility of MultiTransmit MR imaging in gel dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maryanski M, Schulz R, Ibbott G, Gatenby J, Xie J, Horton D, Gore JC (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455

    Article  CAS  Google Scholar 

  2. Lepage M, Whittaker A, Rintoul L, Baldock C (2001) 13C, 1H NMR and FT–Raman study of the radiation-induced modifications in radiation dosimetry polymer gels. J Appl Polym Sci 79:1572–1581

    Article  CAS  Google Scholar 

  3. Lepage M, McMahon K, Galloway G, De Deene Y, Back S, Baldock C (2002) Magnetization transfer imaging for polymer gel dosimetry. Phys Med Biol 47:1881–1890

    Article  CAS  Google Scholar 

  4. Whitney H, Gochberg D, Gore J (2008) Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry. Phys Med Biol 53:7107–7124

    Article  Google Scholar 

  5. Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63

    Article  CAS  Google Scholar 

  6. De Deene Y (2004) Fundamentals of MRI measurements for gel dosimetry. J Phys 3:87–114

    Google Scholar 

  7. Oldham M, McJury M, Baustert I, Webb S, Leach M (1998) Improving calibration accuracy in gel dosimetry. Phys Med Biol 43:2709–2720

    Article  CAS  Google Scholar 

  8. De Deene Y, Hanselaer P, De Wagter C, Achten E, De Neve W (2000) An investigation of the chemical stability of a monomer/polymer gel dosimeter. Phys Med Biol 45:859–878

    Article  Google Scholar 

  9. McJury M, Oldham M, Leach M, Webb S (1999) Dynamics of polymerization in polyacrylamide gel (PAG) dosimeters I. Ageing and long-term stability. Phys Med Biol 44:1863–1873

    Article  CAS  Google Scholar 

  10. De Deene Y, De Wagter C, De Neve W, Achten E (2000) Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: II. Analysis of B1-field inhomogeneity. Phys Med Biol 45:1825–1839

    Article  Google Scholar 

  11. De Deene Y, De Wagter C, De Neve W, Achten E (2000) Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: I. Analysis and compensation of eddy currents. Phys Med Biol 45:1807–1823

    Article  Google Scholar 

  12. Katscher U, Börnert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400

    Article  Google Scholar 

  13. Willinek W, Gieseke J, KuKuk G, Nelles M, Köniq R, Morakkabati-spitz N, Träber F, Thomas D, Kuhl CK, Schild HH (2010) Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 256:966–975

    Article  Google Scholar 

  14. Kukuk G, Gieseke J, Weber S, Hadizadeh D, Nelles M, Träber F, Schild HH, Willinek WA (2011) Focal liver lesions at 3.0 T: lesion detectability and image quality with T2-weighted imaging by using conventional and dual-source parallel radiofrequency transmission. Radiology 259:421–428

    Article  Google Scholar 

  15. Baldock C, Lepage M, Back S, Murry P, Jayasekera P, Porter D, Kron T (2001) Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460

    Article  Google Scholar 

  16. Cunningham C, Pauly J, Nayak K (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55:1326–1333

    Article  Google Scholar 

  17. Heverhagen J (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245:638–639

    Article  Google Scholar 

  18. Moon W (2007) Measurement of signal-to-noise ratio in MR imaging with sensitivity encoding. Radiology 243:908–909

    Article  Google Scholar 

  19. Guo L, Liu C, Chen W, Chan Q, Wang G (2013) Dual-source parallel RF transmission for diffusion-weighted imaging of the abdomen using different b values: image quality and apparent diffusion coefficient comparison with conventional single-source transmission. J Magn Reson Imaging 37:875–885

    Article  Google Scholar 

  20. Baldock C, Murry P, Kron T (1999) Uncertainty analysis in polymer gel dosimetry. Phys Med Biol 44:N243–N246

    Article  CAS  Google Scholar 

  21. Farajollahi A, Bonnett D, Ratcliffe A, Aukett R, Mills J (1999) An investigation into the use of polymer gel dosimetry in low dose rate brachytherapy. Brit J Radiol 72:1085–1092

    Article  CAS  Google Scholar 

  22. Thomsen C, Jensen K, Jensen M, Olsen E, Henriksen O (1990) MR pulse sequences for selective relaxation time measurements: a phantom study. Magn Reson Imaging 8:43–50

    Article  CAS  Google Scholar 

  23. Fransson A, Ericsson A, Sperbe G (1993) Dependence on T1 of the echo amplitudes from multiple spin-echo sequences with equidistant echoes: simulation studies. Magn Reson Imaging 11:197–205

    Article  CAS  Google Scholar 

  24. Andersen C, Jensen F (1994) Precision, accuracy, and image plane uniformity in NMR relaxation time imaging on a 1.5 T whole-body MR imaging system. Magn Reson Imaging 12:775–784

    Article  CAS  Google Scholar 

  25. Frayne R, Goodyear B, Dickhoff P, Lauzon M, Sevick R (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    Google Scholar 

  26. Ibbott G, Maryanski M, Eastman P, Holcomb S, Zhang Y, Avison RG, Sanders M, Gore JC (1997) Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters. Int J Radiat Oncol Biol Phys 38:1097–1103

    Article  CAS  Google Scholar 

  27. Meeks S, Bova F, Maryanski M, Kendrick L, Ranade M, Buatti J, Friedman WA (1999) Image registration of BANG gel dose maps for quantitative dosimetry verification. Int J Radiat Oncol Biol Phys 43:1135–1141

    Article  CAS  Google Scholar 

  28. Low D, Markman J, Dempsey J, Mutic S, Oldham M, Venkatesan R, Haacke EM, Purdy JA (2000) Noise in polymer gel measurements using MRI. Med Phys 27:1814–1817

    Article  CAS  Google Scholar 

  29. Oldham M, Baustert I, Lord C, Smith T, McJury M, Warrington AP, Leach MO, Webb S (1998) An investigation into the dosimetry of a nine-field tomotherapy irradiation using BANG-gel dosimetry. Phys Med Biol 43:1113–1132

    Article  CAS  Google Scholar 

  30. McJury M, Tapper P, Cosgrove V, Murphy P, Griffin S, Leach MO, Webb S, Oldham M (1999) Experimental 3D dosimetry around a high-dose-rate clinical Ir-192 source using a polyacrylamide gel (PAG) dosimeter. Phys Med Biol 44:2431–2444

    Article  CAS  Google Scholar 

  31. Hepworth S, McJury M, Oldham M, Morton E, Doran S (1999) Dose mapping of inhomogeneities positioned in radiosensitive polymer gels. Nucl Instrum Methods Phys Res A 422:756–760

    Article  CAS  Google Scholar 

  32. Haraldsson P, Bäck S, Magnusson P, Olsson L (2000) Dose response characteristics and basic dose distribution data for a polymerization-based dosimeter gel evaluated using MR. Br J Radiol 73:58–65

    Article  CAS  Google Scholar 

  33. Ramm U, Weber U, Bock M, Kramer M, Bankamp A, Damrau M, Thilmann C, Böttcher HD, Schad LR, Kraft G (2000) Three-dimensional BANG™ gel dosimetry in conformal carbon ion radiotherapy. Phys Med Biol 45:N95–N102

    Article  CAS  Google Scholar 

  34. Baustert I, Oldham M, Smith T, Hayes C, Webb S, Leach M (2000) Optimized MR imaging for polyacrylamide gel dosimetry. Phys Med Biol 45:847–858

    Article  CAS  Google Scholar 

  35. Lepage M, Whittaker A, Rintoul L, Bäck S, Baldock C (2001) Modelling of post-irradiation events in polymer gel dosimeters. Phys Med Biol 46:2827–2839

    Article  CAS  Google Scholar 

  36. De Deene Y, Venning A, Hurley C, Healy B, Baldock C (2002) Dose response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47:2459–2470

    Article  Google Scholar 

  37. Maryanski M, Audet C, Gore J (1997) Effects of cross-linking and temperature on the dose response of a BANG polymer gel dosimeter. Phys Med Biol 42:303–311

    Article  CAS  Google Scholar 

  38. Spevacek V, Novotny J, Dvorak P, Vymazal J, Cechak T (2001) Temperature dependence of polymer-gel dosimeter nuclear magnetic resonance response. Med Phys 28:2370–2378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the program of Basic Atomic Energy Research Institute (BAERI) (2009-0078390) and a grant (2012-007883) from the Mid-career Researcher Program through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea. This study was conducted using a whole-body 3T MRI scanner at the Ochang Center of the Korea Basic Science Institute (KBSI-#E34600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Young Choe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Baek, HM., Lee, JH. et al. Reduced dose uncertainty in MRI-based polymer gel dosimetry using parallel RF transmission with multiple RF sources. J Radioanal Nucl Chem 302, 533–541 (2014). https://doi.org/10.1007/s10967-014-3232-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3232-9

Keywords

Navigation