Skip to main content
Log in

Simultaneous recovery of plutonium and americium from assorted analytical waste solutions using extraction chromatography

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A rapid extraction chromatography based methodology was developed for simultaneous recovery of plutonium and americium from various kinds of analytical waste obtained during chemical quality control of plutonium based nuclear materials using sulphonic acid based actinide™ resin. Efforts were made to understand the effect of initial feed acidity, gamma radiation and the concentrations of Am3+ and Pu4+ on their k d. values. Processing of assorted analytical waste solutions through this method revealed that more than 95 % of Am3+ and 90 % of Pu4+ were adsorbed on the resin while iso- propanol can be successfully employed for the quantitative recovery of both the actinides from the loaded resin phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sengupta A, Adya VC, Mohapatra PK, Godbole SV, Manchanda VK (2010) J Radioanal Nucl Chem 283:777–783

    Article  CAS  Google Scholar 

  2. Sengupta A, Thulasidas SK, Adya VC, Mohapatra PK, Godbole SV, Manchanda VK (2012) J Radioanal Nucl Chem 292(3):1017–1023

    Article  CAS  Google Scholar 

  3. Adya VC, Sengupta A, Dhawale BA, Rajeswari B, Thulasidas SK, Godbole SV (2012) J Radioanal Nucl Chem 291(3):843–848

    Article  CAS  Google Scholar 

  4. Adya VC, Sengupta A, Ansari S, Mohapatra PK, Bhide MK, Godbole SV (2013) J Radioanal Nucl Chem 295(2):1023–10238

    Article  CAS  Google Scholar 

  5. Ansari SA, Mohapatra PK, Manchanda VK (2009) Ind Eng Chem Res 48(18):8605–8861

    Article  CAS  Google Scholar 

  6. Meyer Daniel JM, Bourg S, Conocar O, Broudic J-C, Moreau JE, Chi Man MW (2007) CR Chimie 10:1001–1009

    Article  Google Scholar 

  7. Takeishi H, Kitatsuji Y, Kimura T, Meguro Y, Yoshida Z, Kihara S (2001) Anal Chim Acta 431:69–80

    Article  CAS  Google Scholar 

  8. Uozumi K, Iizuka M, Kato T, Inoue T, Shirai O, Iwai T, Yasuo Arai Y (2004) J Nucl Mater 325:34–43

    Article  CAS  Google Scholar 

  9. Straka M, Korenko M, Lisy F (2010) J Radioanal Nucl Chem 284:245

    Article  CAS  Google Scholar 

  10. Gao FX, Wang CS, Liu LS, Guo JH, Chang SW, Chang Li, Li RX, Ouyang YG (2009) J Radioanal Nucl Chem 280:207

    Article  CAS  Google Scholar 

  11. Martinot L, Lopes L, Marien J, Jérôme C (2002) J Radioanal Nucl Chem 253:407

    Article  CAS  Google Scholar 

  12. Giridhar P, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2007) Electrochim Acta 52:3006–3012

    Article  CAS  Google Scholar 

  13. Jagadeeswara Rao C, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2009) Electrochim Acta 54:4718–4725

    Article  Google Scholar 

  14. Sengupta A, Mohapatra PK, Iqbal M, Huskensb J, Verboom W (2012) Dalton Trans 41(23):6970–6979

    Article  CAS  Google Scholar 

  15. Ruikar PB, Nagar MS, Subramanian MS, Gupta KK, Varadarajan N, Singh RK (1995) J Radioanal Nucl Chem 196:171–178

    Article  CAS  Google Scholar 

  16. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Inorg Chem 52(5):2533–2541

    Article  CAS  Google Scholar 

  17. Proctor SG (1976) J Less-Common Metals 44:195–199

    Article  CAS  Google Scholar 

  18. Morita Y, Sasaki Y, Asakura T, Kitatsuji Y, Sugo Y, Kimura T (2010) Mater Sci Eng 9:012057. doi:10.1088/1757-899X/9/1/012057

    Google Scholar 

  19. Michel H, Barci-Funel G, Dalmasso J, Ardisson G (1999) J Radioanal Nucl Chem 240:467–470

    Article  CAS  Google Scholar 

  20. Usuda S (1988) J Radioanal Nucl Chem 123:619–631

    Article  CAS  Google Scholar 

  21. Horwitz EP, Dietz ML, Chirizia R (1992) J Radioanal Nucl Chem 161:575–583

    Article  CAS  Google Scholar 

  22. Thakkar AH (2001) J Radioanal Nucl Chem 248:453–456

    Article  CAS  Google Scholar 

  23. Choppin GR, Dinus RH (1961) Inorg chem 1:140–145

    Article  Google Scholar 

  24. Mohapatra PK, Manchanda VK (1996) J Incl Phenom Mol Recog Chem 25:257–265

    Article  CAS  Google Scholar 

  25. Mirashi NN, Shah PM, Aggarwal SK (2008) J Radioanal Nucl Chem 275(3):479–482

    Article  CAS  Google Scholar 

  26. Aggarwal SK, Mirashi NN, Chakraborty S, Telmore VM (2010) J Nucl Mater 406:271–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renuka H. Sankhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankhe, R.H., Sengupta, A. & Mirashi, N.N. Simultaneous recovery of plutonium and americium from assorted analytical waste solutions using extraction chromatography. J Radioanal Nucl Chem 302, 617–622 (2014). https://doi.org/10.1007/s10967-014-3230-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3230-y

Keywords

Navigation