Skip to main content
Log in

Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The triphosphate-crosslinked magnetic chitosan resins (TPP-MCR) with a diameter range of 200–350 nm were synthesized for the adsorption of U(VI) and Th(IV) ions from aqueous solutions. The adsorption experiments were conducted in both mono-component systems with pure actinide solution and bi-component systems with different U/Th mass ratios. The maximum adsorption capacities in mono-component systems determined by Langmuir model were 169.5 and 146.8 mg g−1 for U(VI) and Th(IV), respectively. In bi-component systems, U(VI) and Th(IV) adsorption capacities were reduced significantly, and the combined sorption capacities were substantially lower (almost halved) compared to those obtained by the addition of sorption capacities using mono-component solutions, indicating that U(VI) and Th(IV) compete for the same sorption sites. Adsorption–desorption experiments for five cycles illustrated the feasibility of the repeated use of TPP-MCR for the adsorption of U(VI) and Th(IV) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang H, Tan N, Wu F, Liu H (2012) Biosorption of uranium(VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J Radioanal Nucl Chem 292:1011–1016

    Article  CAS  Google Scholar 

  2. Mellah A, Chegrouche S, Barkat M (2007) The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85:163–171

    Article  CAS  Google Scholar 

  3. Gu B, Ku Y, Brown G (2005) Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ Sci Technol 39:901–907

    Article  CAS  Google Scholar 

  4. Yaftian M, Taheri R, Zamani A, Matt D (2004) Thermodynamics of the solvent extraction of thorium and europium nitrates by neutral phosphorylated ligands. J Radioanal Nucl Chem 262:455–459

    Article  CAS  Google Scholar 

  5. Hur Y, Lee Y, Jang G, Choi H, Koh K (2002) Detection of uranyl ion using polymeric membrane containing calyx[6] arene uranophile. Mol Cryst Liq Cryst 377:221–224

    Article  CAS  Google Scholar 

  6. Rui X, Kwon MJ, Loughlin EJ, Dunham-Cheatham S, Fein JB, Bunker B, Kemner KM, Boyanov MI (2013) Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products. Environ Sci Technol 47:5668–5678

    Article  CAS  Google Scholar 

  7. Humelnicu D, Dinu MV, Dragan ES (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 185:447–455

    Article  CAS  Google Scholar 

  8. Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioact 106:8–19

    Article  CAS  Google Scholar 

  9. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  10. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  11. Ambashta RD, Sillanpa M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Article  CAS  Google Scholar 

  12. Rojo I, Seco F, Rovira M, Giménez J, Cervantes G, Martí V, Pablo J (2009) Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J Hazard Mater 385:474–478

    CAS  Google Scholar 

  13. Aamrani S, Giménez J, Rovira M, Seco F, Grivé M, Bruno J, Duro L, Pablo J (2007) A spectroscopic study of uranium(VI) interaction with magnetite. Appl Surf Sci 253:8794–8797

    Article  Google Scholar 

  14. Wang J, Peng R, Yang J, Liu Y, Hu X (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr Polym 84:1169–1175

    Article  CAS  Google Scholar 

  15. Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366:165–172

    Article  CAS  Google Scholar 

  16. Sureshkumar MK, Das D, Mallia MB, Gupt PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  17. Lee S, Mi F, Shen Y, Shyu S (2001) Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer 42:1879–1892

    Article  CAS  Google Scholar 

  18. Ngah WSW, Fatinathan S (2010) Adsorption characterisation of Pb(II) and Cu(II) ions onto chitosan tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91:958–969

    Article  CAS  Google Scholar 

  19. Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22

    Article  CAS  Google Scholar 

  20. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  Google Scholar 

  21. Oliveira R, Jouannin C, Guibal E, Garcia J (2011) Samarium(III) and praseodymium(III) biosorption on Sargassum sp.: batch study. Process Biochem 46:736–744

    Article  CAS  Google Scholar 

  22. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2 + , UO22 + , and Th4+. J Hazard Mater 151:380–388

    Article  CAS  Google Scholar 

  23. Sabarudin A, Oshima M, Takayanagi T, Hakim L, Oshita K (2007) Functionalization of chitosan with 3,4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 581:214–220

    Article  CAS  Google Scholar 

  24. Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Fund Program (21366001), the National Natural Science Fund Program (21166001), and the Scientific Research Fund from Education Bureau of Jiangxi (GJJ14390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Jia, Y., Peng, J. et al. Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins. J Radioanal Nucl Chem 302, 331–340 (2014). https://doi.org/10.1007/s10967-014-3125-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3125-y

Keywords

Navigation