Skip to main content
Log in

Detection of uranium with a wireless sensing method by using salophen as receptor and magnetic nanoparticles as signal-amplifying tags

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new wireless sensing method for the detection of uranium in water samples has been reported in this paper. The method is based on a sandwich-type detection strategy. Salophen, a tetradentate ligand of uranyl ion, was immobilized on the surface of the polyurethane-protected magnetoelastic sensor as receptor for the capture of uranyl ion. The phosphorylated polyvinyl alcohol coated magnetic Fe3O4 nanoparticles were used as signal-amplifying tags of uranyl ion. In a procedure of determining uranium, firstly uranyl ion in sample solution was captured on the sensor surface. Then the captured uranyl bound the nanoparticle through its coordination with the phosphate group. The amount of uranium was detected through the measure of the resonance frequency shift caused by the enhanced mass loading on the sensor surface. A linear range was found to be 0.2–20.0 μg/L under optimal conditions with a detection limit of 0.11 μg/L. The method has been applied to determine uranium in environmental water samples with the relative standard deviations of 2.1–3.6 % and the recoveries of 98.0–101.5 %. The present technique is one of the most suitable techniques for assay of uranium at trace level in environmental water samples collected from different sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gonzalez JJ, Oropeza D, Mao X, Russo RE (2008) Assessment of the precision and accuracy of thorium (232Th) and uranium (238U) measured by quadrupole based inductively coupled plasma-mass spectrometry using liquid nebulization, and femtosecond laser ablation. J Anal Atomic Spectrom 23:229–234

    Article  CAS  Google Scholar 

  2. Jamali MR, Assadi Y, Shemirani F, Hosseini MRM, Kozani RR, Masteri-Farahani M, Salavati-Niasari M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579:68–73

    Article  CAS  Google Scholar 

  3. Kapsimalis R, Landsberger S, Ahmed YA (2009) The determination of uranium in food samples by Compton suppression epithermal neutron activation analysis. Appl Radiat Isot 67:2097–2099

    Article  CAS  Google Scholar 

  4. Azam A, Prasad R (1989) Trace element analysis of uranium of soil and plant samples using fission track registration technique. J Radioanal Nucl Chem 133:199–202

    Article  CAS  Google Scholar 

  5. Nachab A, Nourreddine A, Benjelloun M, Kihel S, Oster D, Pape A (2004) Uranium analysis of sediments by γ-ray spectrometry with corrections for self-absorption. Nucl Instrum Methods B 215:228–234

    Article  CAS  Google Scholar 

  6. Ruan C, Luo W, Wang W, Gu B (2007) Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal Chim Acta 605:80–86

    Article  CAS  Google Scholar 

  7. Ganesh S, Khan F, Ahmed MK, Pandey S (2010) Sequential determination of uranium(IV), free acidity and hydrazine in a single aliquot. J Radioanal Nucl Chem 286:33–37

    Article  CAS  Google Scholar 

  8. Grimes CA, Roy SC, Rani S, Cai Q (2011) Theory, instrumentation and applications of magnetoelastic resonance sensors: a review. Sensors 11:2809–2844

    Article  Google Scholar 

  9. Stoyanov PG, Grimes CA (2000) Remote query magnetostrictive viscosity sensor. Sens Actuators A 80:8–14

    Article  CAS  Google Scholar 

  10. Cai QY, Grimes CA (2000) Remote query magnetoelastic pH sensor. Sens Actuators B 71:112–117

    Article  CAS  Google Scholar 

  11. Grimes CA, Mungle CS, Zeng ZF, Jain MK, Dreschel WR, Paulose M, Ong KG (2002) Wireless magnetoelastic resonance sensors: a critical review. Sensors 2:294–313

    Article  CAS  Google Scholar 

  12. He B, Liao L-F, Hu S-J, Gao S-Q, Xiao X-L (2009) Determination of trace mercury with catalytic precipitation wireless sensing method. Chin J Anal Chem 37:123–126

    CAS  Google Scholar 

  13. Du N, Liao L, Xiao Y, Xiao X, Zhao Z, Lin Y (2011) Determination of radon using solid state nuclear tracks wireless sensing method. Anal Chim Acta 686:121–125

    Article  CAS  Google Scholar 

  14. Bouropoulos N, Kouzoudis D, Grimes C (2005) The real-time, in situ monitoring of calcium oxalate and brushite precipitation using magnetoelastic sensors. Sens Actuators B 109:227–232

    Article  CAS  Google Scholar 

  15. Cai QY, Zeng KF, Ruan CM, Desai TA, Grimes CA (2004) A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Anal Chem 76:4038–4043

    Article  CAS  Google Scholar 

  16. Wu SH, Cai QY, Grimes CA (2006) Kinetic assay of trypsin with a wireless magnetoelastic sensor. Sens Lett 4:160–164

    Article  CAS  Google Scholar 

  17. Ruan C, Zeng K, Varghese OK, Grimes CA (2004) A magnetoelastic bioaffinity-based sensor for avidin. Biosens Bioelectron 19:1695–1701

    Article  CAS  Google Scholar 

  18. Wu S, Zhu Y, Cai Q, Zeng K, Grimes CA (2007) A wireless magnetoelastic α-amylase sensor. Sens Actuators B 121:476–481

    Article  CAS  Google Scholar 

  19. Wu S, Gao X, Cai Q, Grimes CA (2007) A wireless magnetoelastic biosensor for convenient and sensitive detection of acid phosphatase. Sens Actuators B 123:856–859

    Article  CAS  Google Scholar 

  20. He B, Liao L, Xiao X, Gao S, Wu Y (2009) Monitoring of Mycoplasma genitalium growth and evaluation of antibacterial activity of antibiotics tetracycline and levofloxacin using a wireless magnetoelastic sensor. Biosens Bioelectron 24:1990–1994

    Article  CAS  Google Scholar 

  21. He B, Liao L, Xiao X, Gao S, Wu Y (2011) Detection of Mycoplasma genitalium using a wireless magnetoelastic immunosensor. Anal Biochem 408:1–4

    Article  CAS  Google Scholar 

  22. Li S, Li Y, Chen H, Horikawa S, Shen W, Simonian A, Chin BA (2010) Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens Bioelectron 26:1313–1319

    Article  CAS  Google Scholar 

  23. Xiao XL, Guo M, Li Q, Cai QY, Yao S, Grimes CA (2008) In-situ monitoring of breast cancer cell (MCF-7) growth and quantification of the cytotoxicity of anticancer drugs fluorouracil and cisplatin. Biosens Bioelectron 24:247–252

    Article  CAS  Google Scholar 

  24. Zhao Z, Liao L, Xiao X, Du N, Lin Y (2011) Wireless sensing determination of uranium(IV) based on its inhibitory effect on a catalytic precipitation reaction. J Radioanal Nucl Chem 289:893–898

    Article  CAS  Google Scholar 

  25. Zhao Z, Liao L, Xiao X, Du N, Lin Y (2013) Determination of uranium(VI) based on enzyme inhibition using a wireless magnetoelastic sensor. Int J Environ Anal Chem 93:613–622

    Google Scholar 

  26. Lin H, Chen Z, Lu Q, Cai Q, Grimes CA (2010) A wireless and sensitive sensing detection of polycyclic aromatic hydrocarbons using humic acid-coated magnetic Fe3O4 nanoparticles as signal-amplifying tags. Sens Actuators B 146:154–159

    Article  CAS  Google Scholar 

  27. Lin H, Lu Q, Ge S, Cai Q, Grimes CA (2010) Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles. Sens Actuators B 147:343–349

    Article  CAS  Google Scholar 

  28. Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coord Chem Rev 250:816–843

    Article  CAS  Google Scholar 

  29. Cametti M, Ilander L, Rissanen K (2009) Recognition of Li+ by a salophen-UO2 homodimeric complex. Inorg Chem 48:8632–8637

    Article  CAS  Google Scholar 

  30. Dalla Cort A, Pasquini C, Schiaffino L (2007) Nonsymmetrically substituted uranyl-salophen receptors: new opportunities for molecular recognition and catalysis. Supramol Chem 19:79–87

    Article  CAS  Google Scholar 

  31. Cametti M, Nissinen M, Dalla Cort A, Mandolini L, Rissanen K (2007) Ion pair recognition of quaternary ammonium and iminium salts by uranyl-salophen compounds in solution and in the solid state. J Am Chem Soc 129:3641–3648

    Article  CAS  Google Scholar 

  32. Cametti M, Nissinen M, Dalla Cort A, Mandolini L, Rissanen K (2005) Recognition of alkali metal halide contact ion pairs by uranyl-salophen receptors bearing aromatic sidearms. The role of cation-π interactions. J Am Chem Soc 127:3831–3837

    Article  CAS  Google Scholar 

  33. Dalla Cort A, Forte G, Schiaffino L (2011) Anion recognition in water with use of a neutral uranyl-salophen receptor. J Org Chem 76:7569–7572

    Article  CAS  Google Scholar 

  34. Ciogli A, Dalla Cort A, Gasparrini F, Lunazzi L, Mandolini L, Mazzanti A, Pasquini C, Pierini M, Schiaffino L, Mihan FY (2008) Enantiomerization of chiral uranyl-salophen complexes via unprecedented ligand hemilability: toward configurationally stable derivatives. J Org Chem 73:6108–6118

    Article  CAS  Google Scholar 

  35. Dalla Cort A, Mandolini L, Schiaffino L (2008) The role of attractive van der Waals forces in the catalysis of michael addition by a phenyl decorated uranyl-salophen complex. J Org Chem 73:9439–9442

    Article  CAS  Google Scholar 

  36. Rudkevich DM, Verboom W, Brzózka Z, Palys MJ, Stauthamer WPRV, Van Hummel GJ, Franken SM, Harkema S, Engbersen JFJ, Reinhoudt DN (1994) Functionalized UO2 salenes: neutral receptors for anions. J Am Chem Soc 116:4341–4351

    Article  CAS  Google Scholar 

  37. Rudkevich DM, Stauthamer WPRV, Verboom W, Engbersen JFJ, Harkema S, Reinhoudt DN (1992) Uranyl UO2-salenes: neutral receptors for anions with a high selectivity for dihydrogen phosphate. J Am Chem Soc 114:9671–9673

    Article  CAS  Google Scholar 

  38. Wojciechowski K, Wróblewski W, Brzózka Z (2003) Anion buffering in the internal electrolyte resulting in extended durability of phosphate-selective electrodes. Anal Chem 75:3270–3273

    Article  CAS  Google Scholar 

  39. Kim J, Kang DM, Shin SC, Choi MY, Kim J, Lee SS, Kim JS (2008) Functional polyterthiophene-appended uranyl-salophen complex: electropolymerization and ion-selective response for monohydrogen phosphate. Anal Chim Acta 614:85–92

    Article  CAS  Google Scholar 

  40. Wygladacz K, Qin Y, Wroblewski W, Bakker E (2008) Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Anal Chim Acta 614:77–84

    Article  CAS  Google Scholar 

  41. Antonisse MMG, Snellink-Ruël BHM, Engbersen JFJ, Reinhoudt DN (1998) H2PO4-selective CHEMFETs with uranyl salophene receptors. Sens Actuators B 47:9–12

    Article  CAS  Google Scholar 

  42. Wróblewski W, Wojciechowski K, Dybko A, Brzózka Z, Egberink RJM, Snellink-Ruël BHM, Reinhoudt DN (2000) Uranyl salophenes as ionophores for phosphate-selective electrodes. Sens Actuators B 68:313–318

    Article  Google Scholar 

  43. Zhao M, Liao L, Wu M, Lin Y, Xiao X, Nie C (2012) Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl-salophen complex and aptamer. Biosens Bioelectron 34:106–111

    Article  CAS  Google Scholar 

  44. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36

    Article  CAS  Google Scholar 

  45. Liu J, Zheng Y, Wang W, Wang A (2009) Preparation and swelling properties of semi-IPN hydrogels based on chitosan-g-poly(acrylic acid) and phosphorylated polyvinyl alcohol. J Appl Polym Sci 114:643–652

    Article  CAS  Google Scholar 

  46. Zeng KF, Ong KG, Mungle C, Grimes CA (2002) Time domain characterization of oscillating sensors: application of frequency counting to resonance frequency determination. Rev Sci Instrum 73:4375–4380

    Article  CAS  Google Scholar 

  47. Zeng KF, Grimes CA (2004) Threshold-crossing counting technique for damping factor determination of resonator sensors. Rev Sci Instrum 75:5257–5261

    Article  CAS  Google Scholar 

  48. Kumar SA, Shenoy NS, Pandey S, Sounderajan S, Venkateswaran G (2008) Direct determination of uranium in seawater by laser fluorimetry. Talanta 77:422–426

    Article  CAS  Google Scholar 

  49. Hedaya MA, Birkenfeld HP, Kathren RL (1997) A sensitive method for the determination of uranium in biological samples utilizing kinetic phosphorescence analysis. J Pharm Biomed Anal 15:1157–1165

    Article  CAS  Google Scholar 

  50. Moulin C, Beaucaire C, Decambox P, Mauchien P (1990) Determination of uranium in solution at the ng L-1 level by time-resolved laser-induced spectrofluorimetry: application to geological samples. Anal Chim Acta 238:291–296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (NSFC Nos. 10975069, 11275091, 20877038) for financial support. The authors also thank Prof. Qingyun Cai (Hunan University, China) for the help with the wireless magnetoelastic-sensing device developed by Craig A. Grimes et al. (The Pennsylvania State University, University Park, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifu Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Liao, L., Zhang, G. et al. Detection of uranium with a wireless sensing method by using salophen as receptor and magnetic nanoparticles as signal-amplifying tags. J Radioanal Nucl Chem 298, 1393–1399 (2013). https://doi.org/10.1007/s10967-013-2663-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2663-z

Keywords

Navigation