Skip to main content
Log in

Distribution behavior of U(VI), Am(III) and Eu(III) on diglycolamide based extraction chromatographic resin in perchloric acid medium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An attempt has been made in the present work to investigate the role of anion for the uptake of Am(III)/Eu(III)/U(VI) by extraction chromatography (EXC) resin incorporating tetra-n-octyl-3-oxapentanediamide, commonly referred to as tetra-octyl diglycolamide (TODGA). In contrast to the nitric acid, perchloric acid medium favors extraction of trivalent metal ions even at low acidity (pH 2) and is almost insensitive to the acidity up to 5 M. Exceptionally large distribution coefficients (105–106) in the wide range of perchlorate concentration (10−2–5 M) is quite unusual and is by far the largest reported in the literature for Am(III)/Eu(III). Thermodynamic data suggests the possibility of inner sphere/cation exchange mechanism involving TODGA aggregates at higher acidity but outer sphere/cation exchange mechanism at low acidity for Eu(III). There is a possibility of employing TODGA based EXC resin for the remediation of liquid waste (contaminated with long lived transuranics like 241/243Am and 245Cm) in the wide range of acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IAEA Publication (2006) Nuclear power and sustainable development 06-30481

  2. NEA 6962 (2010) Technology roadmap, nuclear energy

  3. EPRI (2010) Advanced nuclear fuel cycles—main challenges and strategic choices, 1020307. EPRI, Palo Alto

  4. The future of the nuclear fuel cycle (2011) MIT study, ISBN 978-0-9828008-4-3

  5. Magill J, Berthou V, Haas D, Galy J, Schenkel R, Wiese H, Heusener G, Tommasi J, Youinou G (2003) Impact limits of partitioning and transmutation scenarios on radiotoxicity of actinides in radioactive waste. Nucl Energy 42:263–277

    Article  CAS  Google Scholar 

  6. Nagyl S (2007) Nuclear waste management and nuclear fuel cycle in radiochemistry and nuclear chemistry. Encyclopedia of life support system (EOLSS Publishers), Oxford

    Google Scholar 

  7. Madic C, Testard F, Hudson MJ, Liljenzin J,Christansen B, Ferrando M, Facchini A, Geist A, Modolo G, Espartero G , Mendoza J (2004) New solvent extraction process for minor actinides-final report. CEA-report

  8. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2011) Aqueous partitioning of minor actinides by different processes. Sep Purif Rev 40:43–76

    Article  CAS  Google Scholar 

  9. Andersson S, Drouet F, Ekberg C, Liljenzin J, Magnusson D, Nilsson M, Retegan T, Skarnemark G (2005) Partitioning and transmutation, annual report 2004, Chalmers University of Technology

  10. Christiansen B, Apostolidis C, Carlos R, Malmbeck R, Pagliosa G, Romer K, Purroy DS (2004) Advanced aqueous reprocessing in P&T strategies: process demonstrations on genuine fuels and targets. Radiochim Acta 92:475–480

    Article  CAS  Google Scholar 

  11. Horwitz EP, Kalina DG, Diamond H, Vandegrift GF, Schulz WW (1985) The TRUEX process—a process for the extraction of the transuranic elements from nitric acid in wastes utilizing modified PUREX solvent. Solvent Extr Ion Exch 3:75–109

    Article  CAS  Google Scholar 

  12. Mahajan GR, Prabhu DR, Manchanda VK, Badheka LP (1998) Substituted malonamides as extractants for partitioning of actinides from nuclear waste solutions. Waste Manag 18:125–133

    Article  CAS  Google Scholar 

  13. Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants diglycolamides for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr Ion Exch 19:91–103

    Article  CAS  Google Scholar 

  14. Tachimori S, Sasaki Y, Suzuki SI (2002) Modification of TODGA-n-dodecane solvent with a monoamide for high loading of lanthanides(III) and actinides(III). Solvent Extr Ion Exch 20:687–699

    Article  CAS  Google Scholar 

  15. Jensen MP, Yaita T, Chiarizia R (2007) Reverse-micelle formation in the partitioning of trivalent F-element cations by biphasic systems containing a tetraalkyldiglycolamide. Langmuir 23(9):4765–4774

    Article  CAS  Google Scholar 

  16. Ganguly R, Sharma JN, Choudhury N (2011) TODGA based w/o micro emulsion in dodecane: an insight into the micellar aggregation characteristics by dynamic light scattering and viscometry. J Colloid Interface Sci 355:458–463

    Article  CAS  Google Scholar 

  17. Pathak PN, Ansari SA, Kumar S, Tomar BS, Manchanda VK (2010) Dynamic light scattering study on the aggregation behaviour of N,N,N’,N’-tetraoctyldiglycolamide (TODGA) and its correlation with the extraction behaviour of metal ions. J Colloid Interface Sci 342:114–118

    Article  CAS  Google Scholar 

  18. Yaita T, Herlinger AW, Thiyagarajan P, Jensen MP (2004) Influence of extraction aggregation the extraction of trivalent F-element cations by a tetraalkyldiglycolamide. Solvent Extr Ion Exch 22:553–571

    Article  CAS  Google Scholar 

  19. Nave S, Modolo G, Madic C, Testard F (2004) Aggregation properties of N,N,N’,N’-tetraoctyl-3-oxapentanediamide (TODGA) in n-dodecane. Solvent Extr Ion Exch 22:527–551

    Article  CAS  Google Scholar 

  20. Ansari SA, Pathak PN, Hussain M, Prasad AK, Parmar VS, Manchanda VK (2005) N,N,N′,N′-tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr Ion Exch 23:463–479

    Article  CAS  Google Scholar 

  21. Smirnov IV (2007) Anomalous effects in extraction of lanthanides and actinides with bidentate neutral organophosphorus extractants: role of proton hydrate solvates. Radiochemistry 49:44–54

    Article  CAS  Google Scholar 

  22. Rozen AM, Krupnov BV (1996) Usp Khim 65:1052–1079

    Article  CAS  Google Scholar 

  23. Horwitz EP, McAlister DR, Dietz ML (2006) Extraction chromatography versus solvent extraction: how similar are they? Sep Sci Technol 41:2163–2182

    Article  CAS  Google Scholar 

  24. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–372

    Article  CAS  Google Scholar 

  25. Gopalakrishnan V, Dhami PS, Ramanujam A, Balarama Krishna MV, Murali MS, Mathur JN, Iyer RH, Bauri AK, Banerji A (1995) Extraction and extraction chromatographic separation of minor actinides from sulphate bearing high level waste solutions using CMPO. J Radioanal Nucl Chem 191(2):279–289

    Article  CAS  Google Scholar 

  26. Ansari SA, Murali MS, Pathak PN, Manchanda VK (2004) Extraction chromatography of actinides using cyanex-923 as stationary phase. Solvent Extr Ion Exch 22(6):1013–1036

    Article  CAS  Google Scholar 

  27. Pietrelli L, Salluzzo A, Troiani F (1990) Sorption of europium and actinides by means of octyl(phenyl)-N, N-diisobutyl carbamoylmethyl phosphine oxide (CMPO) loaded on silica. J Radioanal Nucl Chem 141(1):107–115

    Article  CAS  Google Scholar 

  28. Ansari SA, Pathak PN, Husain M, Prasad AK, Parmar VS, Manchanda VK (2006) Extraction chromatographic studies of metal ions using N,N,N′,N′-tetraoctyl diglycolamide as the stationary phase. Talanta 68:1273–1280

    Article  CAS  Google Scholar 

  29. Shaibu BS, Reddy MLP, Murali MS, Manchanda VK (2007) N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide impregnated magnetic particles for the uptake of lanthanides and actinides from nuclear waste streams. Radiochim Acta 95(3):159–164

    Article  CAS  Google Scholar 

  30. Hecke KV, Modolo GJ (2004) Separation of actinides from low level liquid wastes (LLLW) by extraction chromatography using novel DMDOHEMA and TODGA impregnated resins. Radioanl Nucl Chem 261(2):269–275

    Article  Google Scholar 

  31. Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch 23(3):319–344

    Article  CAS  Google Scholar 

  32. Modolo G, Asp H, Schreinemachers und C, Vijgen H (2004) Recovery of actinides and lanthanides from high-level liquid waste by extraction chromatography using TODGA+TBP impregnated resins. Radiochim Acta 95(7):391–397

    Google Scholar 

  33. Hoshi H, Wei YZ, Kumagai M, Asakura T, Morita Y (2004) Group separation of trivalent minor actinides and lanthanides by TODGA extraction chromatography for radioactive waste management. J Alloy Compd 3741(2):451–455

    Article  Google Scholar 

  34. Zhang A, Wei Y, Hoshi H, Kumagai M, Kamiya M, Koyama T (2005) Resistance properties of a macroporous silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide-impregnated polymeric adsorption material against nitric acid, temperature and γ-irradiation. Radiat Phys Chem 72:669–678

    Article  CAS  Google Scholar 

  35. Zhang A, Kuraoka E, Kumagai M (2006) Removal of Pd(II), Zr(IV), Sr(II), Fe(III), and Mo(VI) from simulated high level liquid waste by extraction chromatography utilizing the macroporous silica-based polymeric materials. Sep Purif Technol 50(1):35–44

    Article  CAS  Google Scholar 

  36. Zhang A, Wei Y, Hoshi H, Kumagai M (2005) Chromatographic separation of strontium(II) from a nitric acid solution containing some typically simulated elements by a novel silica-based TODGA impregnated polymeric composite in the MAREC process. Solvent Extr Ion Exch 23(2):231–247

    Article  CAS  Google Scholar 

  37. Zhang A, Kuraoka E, Hoshi H, Kumagai M (2004) Synthesis of two novel macroporous silica-based impregnated polymeric composites and their application in highly active liquid waste partitioning by extraction chromatography. J Chromatgr A 1061(2):175–182

    Article  CAS  Google Scholar 

  38. Pourmand A, Dauphas N (2010) Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta 81(3):741–753

    Article  CAS  Google Scholar 

  39. Kim SY, Xu Y, Ito T, Wu Y, Tada T, Hitomi K, Kuraoka E, Ishii K (2013) A novel partitioning process for treatment of high level liquid waste using macroporous silica-based adsorbents. J Radioanal Nucl Chem 295(2):1043–1050

    Article  CAS  Google Scholar 

  40. Xu Y, Kim S-Y, Usuda S, Wei Y, Ishii K (2013) Adsorption and desorption behavior of tetravalent zirconium onto a silica-based macroporous TODGA adsorbent in HNO3 solution. J Radioanal Nucl Chem 297(1):91–96

    Google Scholar 

  41. Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) Diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Chem 291:877–883

    Google Scholar 

  42. Manchanda VK, Pathak PN (2004) Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep Purif Technol 35:85–103

    Article  CAS  Google Scholar 

  43. Manchanda VK, Mohapatra PK, Veeraraghavan R (1996) 3-Phenyl-4-benzoyl-5-isoxazolone: a promising chelate extractant for actinide separation from acidic nuclear waste solutions. Anal Chim Acta 320:151–154

    Article  CAS  Google Scholar 

  44. Ahrland S, Lizenzin JD, Rydberg J (1973) In: Bailar JC, Emeleus HJ, Nyholm R, Trotman-Dickenson AF (eds) Comprehensive inorganic chemistry. Pergamon Press, Oxford, p 577

    Google Scholar 

  45. Mohapatra PK, Manchanda VK (1991) Complexation of Am(III) with crown ethers in aqueous phase. Radiochim Acta 55:193–197

    CAS  Google Scholar 

  46. Sasaki Y, Choppin GR (1996) Solvent extraction of Eu, Th, U, Np and Am with N,N’-dimethyl-N,N’-dihexyl-3-oxapentanediamide and its analogous compounds. Anal Sci 12:225–230

    Article  CAS  Google Scholar 

  47. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B25:925–946

    Google Scholar 

  48. Ahrland S, Lizenzin JD, Rydberg J (1973) In: Bailar JC, Emeleus HJ, Nyholm R, Trotman-Dickenson AF (eds) Comprehensive inorganic chemistry. Pergamon Press, Oxford, p 477

    Google Scholar 

  49. Andersson S, Ekberg C, Liljenzin J-O, Nilsson M, Skarnemark G (2004) Study of nitrate complex formation with trivalent Pm, Eu, Am and Cm using a solvent extraction technique. Radiochim Acta 92:863–867

    Article  CAS  Google Scholar 

Download references

Acknowledgements:

This research was supported by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology to V.K.M. (R31-2008-10029 under WCU program). Authors would like to acknowledge the cooperation and support of Mr Sangbok Lee, RI centre, CCRF, SKKU for experimental work with radionuclides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Manchanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, C.K., Joshirao, P.M., Bagla, H. et al. Distribution behavior of U(VI), Am(III) and Eu(III) on diglycolamide based extraction chromatographic resin in perchloric acid medium. J Radioanal Nucl Chem 298, 1643–1650 (2013). https://doi.org/10.1007/s10967-013-2642-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2642-4

Keywords

Navigation