Skip to main content
Log in

k0-INAA of Venezuelan ceramics and complete statistical analysis to establish their provenance

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A group of 46 archaeological figurines samples (ad 1300 and 1500) from Venezuelan mainland and northern island were analyzed by k0-instrumental neutron activation analysis (k0-INAA) to obtain their elemental content and give a step ahead to establish the provenance of the island figurines. In total 37 elemental concentrations were measured with uncertainties between 3 and 20 %. To make the study of provenance, a complete statistical analysis was achieved; Fisher linear discriminant, principal component analysis, hierarchical clustering and the Hotelling T2 test were used to this end. Furthermore, not only the 46 samples analyzed in this work by k0-INAA were used, but also 40 samples analyzed by PGNAA and reported by Sajo-Bohus et al. (JRNC 265(2):247–256, 2005) were included in the statistical analysis. It was done in order to increase the size of the data set, and then to obtain from the statistical techniques more reliable results. It was found that a very good differentiation exits between the figurines from the island and from the mainland supporting the idea that the raw materials of the figurines come from different places.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mackowiak de Anctzak MM, Anctzak A (2006) “Los Ídolos de las Islas Prometidas Arqueología Pre-Hispánica del Archipiélago de los Roques”, Editorial Equinoccio, 1st edition, Venezuela

  2. Sajo-Bohus L, Mackowiak de Antczak MM, Greaves E, Antczak A, Bermudez J, Kasztovszky Zs, Poirier T, Simonits A (2005) JRNC 265(2):247–256

    Google Scholar 

  3. Mackowiak de Anctzak, Kasztovszky Zs, Révay Zs, Anctzak A, Molnár GL, Sajó-Bohus L, Greaves ED (2002) Proceedings of the international radiation education symposium, pp 71–78

  4. Barros H, Sajo-Bohus L, Kasztovszky Zs (2006) 11th International conference on nuclear reaction mechanisms, Villa Monastero, Varenna, 12–16 June 2006

  5. Travesi A (1975) “Análisis por Activación Neutrónica: Teoría, práctica y aplicaciones”. Ediciones J.E.N, Madrid, 1era Edición

  6. De Corte F (2003) k0-NAA past the turn of the century: problems, concepts, insights, prospects. Czechoslov J Phys 53(Suppl. A):A161

    Article  Google Scholar 

  7. De Corte F (1987) “The k0-standardization method: a move to the optimization of neutron activation analysis”. Ph.D. thesis, University of Gent, Belgium

  8. Vermaercke P, Robouch P, Eguskiza M, De Corte F, Kennedy G, Smodis B, Jacimovic R, Yonezawa C, Matsue H, Lin X, Blaauw M, Kucera J (2006) Nucl Instrum Methods Phys Res A 564:675–682

    Article  CAS  Google Scholar 

  9. De Wispelaerea A, De Cortea F, Bossusb DAW, Swagtenb JJMG, Vermaercke P (2006) Nucl Instrum Methods Phys Res A 564:636–640

    Article  Google Scholar 

  10. Simonits A, Östör J, Kálvin S, Fazekas B (2003) J Radioanal Nucl Chem 257:589–595

    Article  CAS  Google Scholar 

  11. Jacimovic R, Smodiš B, Bucar T, Stegnar P (2003) J Radioanal Nucl Chem 257(3):659–663

    Article  CAS  Google Scholar 

  12. Read HH (1970) Rutley′s elements of mineralogy, 26th edn. Thomas Murby and CO, London

    Book  Google Scholar 

  13. Xilei L, Van Renterghem D, De Corte F, Cornelis R (1989) J Radioanal Nucl Chem 133:153–165

    Article  Google Scholar 

  14. R Core Team (2012) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN 3-900051-07-0, http://www.R-project.org. Accessed Sep 2012

  15. Buxeda i Garrigós J (1999) Alteration and contamination of archaeological ceramics: the perturbation problem. J Archeol Sci 26:295–313

    Article  Google Scholar 

  16. Vitali V, Franklin UM (1986) New approaches to the characterization and classification of ceramics on the basis of their elemental composition. J Archaeol Sci 13:161–170

    Article  Google Scholar 

  17. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  18. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7(2):179–188. doi:10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  19. Duda RO, Hart PE, Stork DH (2000) Pattern classification, 2nd edn. Wiley Interscience, New York. ISBN 0-471-05669-3

    Google Scholar 

  20. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572. http://pbil.univ-lyon1.fr/R/pearson1901.pdf

  21. Jolliffe IT (2002) Principal components analysis (PCA) series: Springer series in statistics, 2nd edn. Springer, New York

    Google Scholar 

  22. Bourlard Herve, Kamp Yves (1988) Auto-association by multilayer perceptrons and singular value decomposition. Biol Cybern 59:291–294

    Article  CAS  Google Scholar 

  23. Gordon AD (1999) Classification, 2nd edn. Chapman & Hall/CRC, London

    Google Scholar 

  24. Kaufman Leonard, Rousseeuw PeterJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  25. Glascock MD, Neff H (2003) Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14:1516–1526

    Article  CAS  Google Scholar 

  26. Hein A, Mommsen H (1999) Element concentration distributions and most discriminating elements for provenancing by neutron activation analyses of ceramics from Bronze Age sites in Greece. J Archaeol Sci 26:1053–1058

    Article  Google Scholar 

  27. Day WHE, Edelsbrunner H (1993) Efficient algorithms for agglomerative hierarchical clustering methods. J Classif 1(1):51–74

    Google Scholar 

  28. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  Google Scholar 

  29. Vinod H (1969) Integer programming and the theory of grouping. J Am Stat Assoc 64:506–517

    Article  Google Scholar 

  30. Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21:768

    Google Scholar 

  31. Hotelling H (1931) The generalization of student’s ratio. Ann Math Stat 2(3):360–378. doi:10.1214/aoms/1177732979

    Article  Google Scholar 

  32. Casella G, Berger RL (1990) Statistical inference. Duxbury Press, Pacific Grove. ISBN 0-534-11958-1

    Google Scholar 

  33. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Google Scholar 

  34. Villasenor-Alva JA, Gonzalez-Estrada E (2009) A generalization of Shapiro–Wilk’s test for multivariate normality. Commun Stat: Theory Methods 38(11):1870–1883

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Department of International Relationships of the Simón Bolívar University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pino, F., Sajo-Castelli, A.M., Barros, H. et al. k0-INAA of Venezuelan ceramics and complete statistical analysis to establish their provenance. J Radioanal Nucl Chem 298, 1257–1272 (2013). https://doi.org/10.1007/s10967-013-2603-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2603-y

Keywords

Navigation