Skip to main content
Log in

Investigation of the Cr(VI) removal from aqueous solutions by stabilized iron-nanoparticles using 51Cr-tracer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Stabilized iron-nanoparticles were used for the Cr(VI)-removal from acidic and neutral aqueous solutions (pH 1, 3, 5 and 7). The chromium interaction with the iron-nanoparticles was studied by a batch technique under different experimental conditions (e.g. pH, temperature, contact time, solid to liquid ratio) using 51Cr as radiotracer and gamma-ray spectroscopy. The results showed that the Cr-removal was fast and the interaction kinetics could be described by a pseudo-second order rate equation. The maximum Cr-removal was observed from solutions of initial pH 3. The sorption showed a positive temperature and solid to liquid ratio dependence. The experimental results were modeled using the Langmuir, Freundlich and Dubinin–Radushkevich isotherm equations and compared with literature data obtained using other sorbents. X-ray photoelectron spectroscopy (XPS) measurements were performed in order to obtain information about the mechanism of the Cr-removal by the iron-nanoparticles. It was demonstrated that the dominated process based on the Cr(VI) reduction followed by the simultaneous oxidation of iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lopez-Tellez G, Barrera CE, Balderas-Hernandez P, Roa-Morales G, Bilyeu B (2011) Chem Eng J 173:480–485

    Article  CAS  Google Scholar 

  2. Kim Ki Do, Choi Dae Woo, Choa Yong-Ho, Kim Hee Taik (2008) J Mater Process Technol 202:569–575

    Article  CAS  Google Scholar 

  3. Barnhart J (1997) Regul Toxicol Pharmacol 26(1):S3–S7

    Article  CAS  Google Scholar 

  4. Chirwa EN, Wand Y (2000) Water Res 34:2376–2384

    Article  CAS  Google Scholar 

  5. Richard FC, Bourg ACM (1991) Water Res 25(7):807–816

    Article  CAS  Google Scholar 

  6. Davis A, Olsen RL (1995) Ground Water 33(5):759–768

    Article  CAS  Google Scholar 

  7. Weng Chih-Huan, Lin Yao-Tung, Lin TY, Kao CM (2007) J Hazard Mater 149:292–302

    Article  CAS  Google Scholar 

  8. Geng Bing, Jin Zhaohui, Li Tielong, Qi Xinhua (2009) Chemosphere 75:825–830

    Article  CAS  Google Scholar 

  9. Foldesova M, Dillinger P, Lukac P (2000) J Radioanal Nucl Chem 245(2):435–439

    Article  CAS  Google Scholar 

  10. Fendorf SE, Li G (1996) Environ Sci Technol 30:1614–1617

    Article  CAS  Google Scholar 

  11. Guha S, Bhargava P (2005) Water Environ Res 77(4):411–416

    Article  CAS  Google Scholar 

  12. Lee T, Lim H, Lee Y, Park JW (2003) Chemosphere 53:479–485

    Article  CAS  Google Scholar 

  13. Hu CY, Lo SL, Liou YH, Hsu YW, Shih K, Lin CJ (2010) Water Res 44:3101–3108

    Article  CAS  Google Scholar 

  14. Powell RM, Puls RW, Hightower ShK, Sabatini DA (1995) Environ Sci Technol 29:1913–1922

    Article  CAS  Google Scholar 

  15. Cissoko Naman, Zhang Zhen, Zhang Jinghui, Xinhua Xu (2009) Process Saf Environ Prot 87:395–400

    Article  CAS  Google Scholar 

  16. Wilkin RT, Su C, Ford RG, Paul CJ (2005) Environ Sci Technol 39(12):4599–4605

    Article  CAS  Google Scholar 

  17. Wilkin RT, Puls RW, Sewell GW (2003) Ground Water 41(4):493–503

    Article  CAS  Google Scholar 

  18. Uyuşur B, Ünlü K (2009) Environ Eng Sci 26(2):385–396

    Article  Google Scholar 

  19. Rivero-Huguet M, Marshall WD (2009) J Hazard Mater 169:1081–1087

    Article  CAS  Google Scholar 

  20. Xu Y, Zhao D (2007) Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  21. Wu Y, Zhang J, Tong Y, Xu X (2009) J Hazard Mater 172:1640–1645

    Article  CAS  Google Scholar 

  22. Yuan Peng, Liu Dong, Fan Mingde, Yang Dan, Zhu Runliang, Ge Fei, Zhu JianXi, He Hongping (2010) J Hazard Mater 173:614–621

    Article  CAS  Google Scholar 

  23. Fang Zhanqiang, Qui Xiuqi, Huang Ruixiong, Qiu Xinnhong, Li Mingyu (2011) Desalination 280:224–231

    Article  CAS  Google Scholar 

  24. Shi T, Wang Z, Liu Y, Jia S, Changming D (2009) J Hazard Mater 161:900–906

    Article  CAS  Google Scholar 

  25. Khezami L, Capart R (2005) J Hazard Mater B123:223–231

    Article  Google Scholar 

  26. Anandkumar J, Mandal B (2011) J Hazard Mater 186:1088–1096

    Article  CAS  Google Scholar 

  27. Nakano Y, Takeshita K, Tsutsumi T (2001) Water Res 35:496–500

    Article  CAS  Google Scholar 

  28. Singh KK, Hasan SH, Talat M, Singh VK, Gangwar SK (2009) Chem Eng J 151:113–121

    Article  CAS  Google Scholar 

  29. Baes CF, Mesmer RE (1986) The hydrolysis of cations. Krieger Publishing Company, Malabar 220

    Google Scholar 

  30. Ho YS, McKay G (1999) Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  31. Ho YS, Chiang CC, Hsu YC (2001) Sep Sci Technol 36(11):2473–2488

    Article  CAS  Google Scholar 

  32. Ho YS, Ng JCY, McKay G (2001) Sep Sci Technol 36(2):241–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the company NAΝOIRON s.r.o. for providing the iron-nanoparticles sorbent. M. Filippousi and G. Vourougis are also thankfully acknowledged for their help with the TEM examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Noli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bampaiti, A., Noli, F. & Misaelides, P. Investigation of the Cr(VI) removal from aqueous solutions by stabilized iron-nanoparticles using 51Cr-tracer. J Radioanal Nucl Chem 298, 909–914 (2013). https://doi.org/10.1007/s10967-013-2483-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2483-1

Keywords

Navigation