Skip to main content
Log in

Determination of trace concentrations of thorium in uranium oxide matrix by epithermal instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An epithermal instrumental neutron activation analysis (EINAA) method using cadmium filter was standardized to determine trace concentrations of thorium in four samples of uranium oxide (U3O8) samples. Samples and thorium standards, wrapped with cadmium foil, were irradiated at a reactor neutron flux of about 1012 cm−2 s−1. Radioactive assay was carried out using a Compton suppressed anticoincidence gamma ray spectrometer consisting of HPGe-BGO detectors coupled to MCA. Concentrations of thorium in these samples were found to be in the range of 15–72 mg kg−1. EINAA results were validated by determining thorium concentrations in uranium matrix by standard addition method. EINAA results were compared with those obtained by two wet chemical methods namely ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results obtained by the three methods were found to be in good agreement, indicating further validity of the proposed EINAA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deb SB, Saxena MK, Nagar BK, Ramakumar KL (2008) At Spectrosc 29:39–44

    CAS  Google Scholar 

  2. Chai J, Oura Y, Ebihara M (2008) J Radioanal Nucl Chem 255:471–475

    Article  Google Scholar 

  3. Rožmarić M, Gojmerac AI, Grahek Z (2009) Talanta 80:352–362

    Article  Google Scholar 

  4. Aydin FA, Soylak M (2007) Talanta 72:187–192

    Article  CAS  Google Scholar 

  5. Takata H, Zheng J, Tagami K, Aono T, Uchida S (2011) Talanta 85:1772–1777

    Article  CAS  Google Scholar 

  6. Fujino O, Umetani S, Ueno E, Shigeta K, Matsuda T (2000) Anal Chim Acta 420:65–71

    Article  CAS  Google Scholar 

  7. Shrivastav P, Menon SK, Agrawal YK (2001) J Radioanal Nucl Chem 250:459–464

    Article  CAS  Google Scholar 

  8. Sheshagiri TK, Babu Y, Jayanthkumar ML, Dalvi AGI, Sastry MD, Joshi BD (1984) Talanta 31:773–776

    Article  Google Scholar 

  9. Jeyakumar S, Mishra VG, Das MK, Raut VV, Sawant RM, Ramakumar KL (2011) J Sep Sci 34:609–616

    Article  CAS  Google Scholar 

  10. Byrne AR, Benedik L (1997) Anal Chem 69:996–999

    Article  CAS  Google Scholar 

  11. Steinnes E (1976) Anal Chem 48:1440–1443

    Article  CAS  Google Scholar 

  12. Steinnes E (1977) Anal Chim Acta 91:357–358

    Article  CAS  Google Scholar 

  13. Glover SE, Qu H, Lamont SP, Grimm CA, Filby RH (2001) J Radioanal Nucl Chem 248:29–33

    Article  CAS  Google Scholar 

  14. Honda T, Oi T, Ossaka T, Nozaki T, Kakihana H (1990) J Radioanal Nucl Chem 139:65–77

    Article  CAS  Google Scholar 

  15. Jagam P, Wang JX, Simpson JJ (1993) J Radioanal Nucl Chem 171:277–286

    Article  CAS  Google Scholar 

  16. Benedik L, Byrne AR (1995) J Radioanal Nucl Chem 189:325–331

    Article  CAS  Google Scholar 

  17. Ogiwara K, Ol T, Ossaka T, Mukaida M, Honda T (1995) J Radioanal Nucl Chem 191:273–278

    Article  CAS  Google Scholar 

  18. Huh CA, Bacon MP (1985) Anal Chem 57:2138–2142

    Article  CAS  Google Scholar 

  19. Gladney ES, Owens JW, Starner JW (1979) Anal Chim Acta 104:121–127

    Article  CAS  Google Scholar 

  20. Tiwari S, Nair AGC, Acharya R, Reddy AVR, Goswami A (2007) J Nucl Radiochem Sci 8:25–30

    CAS  Google Scholar 

  21. De Corte F, Simonits A (1989) J Radioanal Nucl Chem 133:43–130

    Google Scholar 

  22. De Corte F, Simonits A (2003) Atomic Data Nucl Data Tables 85:47–67

    Google Scholar 

  23. Mukhopadhyay PK (2001) Symposium on intelligent nuclear instrumentation. Bhabha Atomic Research Centre, Mumbai, pp 307–310

    Google Scholar 

Download references

Acknowledgment

Authors are thankful to Dr. P. K. Pujari, Head, NCS, RCD, Dr. A. Goswami, Head, RCD, Dr. B. S. Tomar, Head, RACD and Dr. K. L. Ramakumar, Director, RC and IG, BARC for their support and encouragement. Authors are thankful to Ms. M. K. T. Bassan, ACD, BARC for her help in ICP-AES work. Authors thank operation crew of the CIRUS reactor and RPhD, BARC for their help during the irradiations. One of the authors (ADS) thanks BARC, DAE for the fellowship under BARC-Mumbai University MoU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Acharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, R., Shinde, A.D., Jeyakumar, S. et al. Determination of trace concentrations of thorium in uranium oxide matrix by epithermal instrumental neutron activation analysis. J Radioanal Nucl Chem 298, 449–453 (2013). https://doi.org/10.1007/s10967-013-2465-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2465-3

Keywords

Navigation