Skip to main content
Log in

Analysis of blood serum of lung cancer patients using particle induced X-ray emission

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Trace elemental imbalance in human beings is postulated to exert action, directly or indirectly, on the carcinogenic process. The objective of this study was to evaluate the levels of trace elements in blood serum samples of lung cancer patients and analyze their alteration with respect to healthy controls. Particle induced X-ray emission (PIXE), a well established method for elemental analysis, was used to identify and quantify trace elements in the blood serum samples of the studied groups. The PIXE measurements were carried out using 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron Accelerator at Ion Beam Laboratory, Institute of Physics, Bhubaneswar, India. The serum of the cancerous group displayed increased concentrations of Ti, Ni, and Cu but lowered concentrations of V, Cr, Mn, Fe, Co, Zn, and Se. Statistically significant differences were found for serum Cr (p < 0.01), Fe (p < 0.0005), Ni (p < 0.05), Cu (p < 0.00005), and Zn (p < 0.0005) between the two studied groups. The copper to zinc ratio for the lung cancer group was 2.24 ± 0.39, which was almost three times the value for normal subjects (0.77 ± 0.14). The observed alterations are discussed with respect to the possible mechanisms by which these elements might influence the carcinogenic process. Significant reduction in mortality from lung cancer can be achieved by advances in early diagnosis and implementation of multidisciplinary treatment programmes leading to improvement of survivorship and better quality of life. It is expected that similar studies from all corners of the world would ultimately lead to the development of novel therapeutic agents to treat lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Travis WD, Travis LB, Devesa SS (1995) Cancer 75:191–202

    Article  CAS  Google Scholar 

  2. Jemal A, Thomas A, Murray T, Thun M (2002) CA Cancer J Clin 52:23–47

    Article  Google Scholar 

  3. Mitchell H, Megraud F (2002) Helicobacter 7:8–16

    Article  Google Scholar 

  4. Spira A, Ettinger DS (2004) N Engl J Med 350:379–392

    Article  CAS  Google Scholar 

  5. IARC (2004) Monographs. Evaluation of Carcinogenic Risks to Humans

  6. Hecht SS (1999) J Natl Cancer Inst 91(14):1194–1210

    Article  CAS  Google Scholar 

  7. Ries LA, Eisner MP, Kosary CL (2000) SEER cancer statistics review. 1973–1997. National Cancer Institute, Bethesda

    Google Scholar 

  8. Kreyberg L (1969) An etiology of lung cancer-a morphological, epidemiological and experimental analysis. Oslo Universitetsforlaget, Oslo, pp 1–90

    Google Scholar 

  9. Kondo K, Takahashi Y, Ishikawa S, Uchihara H, Hirose Y, Yoshizawa K, Tsuyuguchi M, Takizawa H, Miyoshi T, Sakiyama S, Monden Y (2003) Cancer 98:2420–2429

    Article  Google Scholar 

  10. Sigel H (1980) Metal ions in biological systems, vol 10. Marcel Dekker, New York

    Google Scholar 

  11. Stephanie S, Thomas R (2007) Cancer Causes Control 18(1):7–27

    Article  Google Scholar 

  12. Sekido Y, Fong KW, Minna JD (1998) Biochim Biophys Acta 1378:F21–F29

    CAS  Google Scholar 

  13. Bombí JA, Martínez A, Ramírez J, Grau JJ, Nadal A, Fernández PL, Palacín A, Cardesa A (2002) Ultrastruct Pathol 26(4):211–218

    Article  Google Scholar 

  14. Smida M, Sebastian MBN (2012) Expert Rev Mol Diagn 12(3):291–302

    Google Scholar 

  15. Maenhaut W, Vandenhaute J, Duflou H (1987) Nucl Instrum Methods Phys Res B 22(1–3):138–144

    Article  Google Scholar 

  16. Zhang YX, Wang YS, Zhang YP, Zhang GL, Huang YY, He W (2007) Nucl Instrum Methods Phys Res B 260(1):178–183

    Article  CAS  Google Scholar 

  17. Akanle OA, Akintanmide A, Durosinmi MA, Oluwole AF, Spyrou NM (1999) Biol Trace Elem Res 71–72:611–616

    Article  Google Scholar 

  18. Naga Raju GJ, John Charles M, Bhuloka Reddy S, Sarita P, Seetharmi Reddy B, Rama Lakshmi PVB, Vijayan V (2005) Nucl Instrum Methods Phys Res B 229:457–464

    Article  Google Scholar 

  19. Naga Raju GJ, Sarita P, Ramana Murty GAV, Ravi Kumar M, Seetharami Reddy B, John Charles M, Lakshminarayana S, Seshi Reddy T, Bhuloka Reddy S, Vijayan V (2006) Appl Radiat Isot 64:893–900

    Article  CAS  Google Scholar 

  20. Naga Raju GJ, Sarita P, Ramana Murty GAV, Kumar MR, Seetharami Reddy B, Lakshminarayana S, Premachand K, Durga Prasad Rao A, Reddy SB, Vijayan V, Rama Lakshmi PVB, Gavarasana S (2007) Eur J Cancer Prev 16(2):108–115

    Article  Google Scholar 

  21. Pradeep AS, Naga Raju GJ, Sarita P, Durga Prasad Rao A, Seetharami Reddy B, Bhagya Rao G, Bhuloka Reddy S (2012) J Radioanal Nucl Chem 294:271–276

    Google Scholar 

  22. Sarita P, Naga Raju GJ, Pradeep AS, Tapash RR, Bhuloka Reddy S, Vijayan V (2012) J Radioanal Nucl Chem 294:355–361

    Google Scholar 

  23. Maxwell JA, Campbell JL, Teesdale WJ (1989) Nucl Instrum Methods Phys Res B 43:218–230

    Article  Google Scholar 

  24. Maxwell JA, Campbell JL, Teesdale WJ (1995) Nucl Instrum Methods Phys Res B 95:407–421

    Article  CAS  Google Scholar 

  25. Mann Henry B, Whitney Donald R (1947) Ann Math Stat 18(1):50–60

    Article  Google Scholar 

  26. Brem SS, Zagzag D, Tsanaclis AM, Gately S, Elkouby MP, Brien SE (1990) Am J Pathol 137:1121–1142

    CAS  Google Scholar 

  27. Armendariz AD, Vulpe CD (2003) J Nutr 133:203E–282E

    Google Scholar 

  28. Sawyer DT (1987) In: Martell AE, Sawyer DT (eds) Oxygen complexes and oxygen activation by transition metals. Plenum Press, New York, pp 131–148

    Google Scholar 

  29. Park JW, Floyd RA (1992) Free Radic Biol Med 12:245–250

    Article  CAS  Google Scholar 

  30. Raju KS, Alesandrii G, Zinche M, Gullino PM (1982) J Natl Cancer Inst 69:1183–1188

    CAS  Google Scholar 

  31. Dara SS (1997) Text book of environmental chemistry and its pollution control, 2nd edn. S Chand and Co Ltd, New Delhi

    Google Scholar 

  32. Lippard SJ (1998) In: Bertini L, Gray HB, Lippard SJ, Valentine JS (eds) Bio inorganic chemistry. Viva Books private Ltd, New Delhi, p 513

    Google Scholar 

  33. Cildag O, Altinisik M, Kozaci D, Karadag F, Kiter G, Altun C (2004) Trace Elem Electrolytes 21(1):23–27

    CAS  Google Scholar 

  34. Ho E, Courtemanche C, Ames BN (2003) J Nutr 133:2543–2548

    CAS  Google Scholar 

  35. Powell SR (2000) J Nutr 130:1447S–1454S

    CAS  Google Scholar 

  36. Ho E, Ames BN (2002) Proc Natl Acad Sci 99:16770–16775

    Article  CAS  Google Scholar 

  37. Ho E (2004) J Nutr Biochem 15:572–578

    Article  CAS  Google Scholar 

  38. Rink L, Gabriel P (2001) Biometals 14:367–383

    Article  CAS  Google Scholar 

  39. Brewer GJ, Dick RD, Grover DK, Le Claire V, Tseng M, Wicha M, Pienta K, Redman BG, Jahan T, Sondak VK, Strawderman M, Le Carpentier G, Merajver SD (2000) Clin Cancer Res 6:1–10

    CAS  Google Scholar 

  40. Ho E, Quan N, Tsai YH, Lai W, Bray TM (2001) Exp Biol Med (Maywood) 226:103–111

    CAS  Google Scholar 

  41. Leccia MT, Richard MJ, Favier A, Beani JC (1999) Biol Trace Elem Res 69:177–190

    Article  CAS  Google Scholar 

  42. Neve J (1991) Experentia 47:187–193

    Article  CAS  Google Scholar 

  43. Combs GF, Clark LC, Turnbull BW (2001) BioFactors 14:153–159

    Article  CAS  Google Scholar 

  44. Baum MK, Miguez-Burbano MJ, Campa A, Shor-Posner G (2000) J Infect Dis 182:S69–S73

    Article  CAS  Google Scholar 

  45. Milde D, Novak O, Stuzka V, Vyslouzil K, Machacek J (2001) Biol Trace Elem Res 79:107–114

    Article  CAS  Google Scholar 

  46. Menter D, Sabichi A, Lippman S (2000) Cancer Epidemiol Biomarkers Prev 9:1171–1182

    CAS  Google Scholar 

  47. Gasparian AV, Yao YJ, Lu J, Yemelyanov AY, Lyakh LA, Slaga TJ, Budunova IV (2002) Mol Cancer Ther 1:1079–1087

    CAS  Google Scholar 

  48. Beard JL (2001) J Nutr 131:568S–579S

    CAS  Google Scholar 

  49. Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42:35–56

    Article  CAS  Google Scholar 

  50. Grimsrud TK, Peto J (2006) Occup Environ Med 63:365–366

    Google Scholar 

  51. Sunderman FW, Sunderman FW Jr (1961) Am J Clin Pathol 35:203–209

    Google Scholar 

  52. Gehring L, Leonhardt P, Bigl H, Losecr T, Poetzsch M, Keller T (1998) In: Collery P, Bratter P, Negretti de Bratter V, Khassanova L, Etienne J-C (eds) Metal ions in biology and medicine, vol 5. John Libbey Eurotext, Paris, pp 583–587

    Google Scholar 

  53. Kasprzak KS (1995) Cancer Invest 13:411–430

    Article  CAS  Google Scholar 

  54. Hartwig A, Mullenders LHF, Schlepegrell R, Kasten U, Beyersmann D (1994) Cancer Res 54:4045–4051

    CAS  Google Scholar 

  55. Krueger I, Mullenders LH, Hartwig A (1999) Carcinogenesis 20:1177–1184

    Article  CAS  Google Scholar 

  56. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Mol Cell Biol 15:2547–2557

    CAS  Google Scholar 

  57. Kasprzak KS, Jagura P, Zastawny TH, Riggs SL, Olinski R, Dizdaroglu M (1997) Carcinogenesis 18:271–277

    Article  CAS  Google Scholar 

  58. Huang X, Klein CB, Costa M (1994) Carcinog (Lond) 15:545–548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Dr. P. Sarita acknowledges the financial support provided by University Grants Commission—Department of Atomic Energy Consortium for Scientific Research, Kolkata Centre to carry out this work during the course of her Ph.D degree programme in the Department of Nuclear Physics, Andhra University. The authors also thank the authorities and staff of Ion Beam Laboratory, Institute of Physics, Bhubaneswar, for providing the Pelletron accelerator facility and for rendering technical assistance. The authors acknowledge the management and staff of Lion’s Cancer Treatment and Research Centre, Visakhapatnam for providing the blood serum samples of lung cancer patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Naga Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarita, P., Raju, G.J.N., Kumar, M.R. et al. Analysis of blood serum of lung cancer patients using particle induced X-ray emission. J Radioanal Nucl Chem 297, 431–436 (2013). https://doi.org/10.1007/s10967-012-2398-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2398-2

Keywords

Navigation