Skip to main content
Log in

Nuclear and chemical data for life sciences

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Use of reactor produced radionuclides is popular in life sciences. However, cyclotron production of proton rich radionuclides are being more focused in recent times. These radionuclides have already gained attention in various fields, including life sciences, provided they are obtained in pure form. This article is a representative brief of our contributions in generating nuclear data for the production of proton rich radionuclides of terbium, astatine, technetium, ruthenium, cadmium, niobium, zirconium, rhenium, etc., which may have application in clinical, biological, agriculture studies or in basic research. The chemical data required to separate the product isotopes from the corresponding target matrix have been presented along with a few propositions of radiopharmaceuticals. It also emphasizes on the development of simple empirical technique, based on the nuclear reaction model analysis, to generate reliable nuclear data for the estimation of yield and angular distribution of emitted neutrons and light charged particles from light as well as heavy ion induced reactions on thick stopping targets. These data bear utmost important in radiation dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qaim SM (1982) Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim Acta 30:147

    CAS  Google Scholar 

  2. http://www.nndc.bnl.gov/nudat2/. Accessed 15 Nov 2012

  3. Das NR, Lahiri S (1991) Liquid ion-exchangers and their uses in the separation of zirconium, niobium, molybdenum, hafnium, tantalum and tungsten. Solvent Extr Ion Exch 9:337

    Article  CAS  Google Scholar 

  4. Maiti M (2011) New measurement of cross sections of evaporation residues from the natPr + 12C reaction: a comparative study on the production of 149Tb. Phys Rev C 84:044615

    Article  Google Scholar 

  5. Maiti M, Lahiri S, Tomar BS (2011) Investigation on the production and isolation of 149,150,151Tb from 12C irradiated natural praseodymium target. Radiochim Acta 99:527

    Article  CAS  Google Scholar 

  6. Alexander JM, Simonoff GN (1963) Excitation functions for 149gTb from reactions between complex nuclei. Phys Rev 130:2383

    Article  CAS  Google Scholar 

  7. Kossakowski R, Jastrzebski J, Rymuza P, Skulski W, Gizon A, Andre S, Genevey J, Gizon J, Barci V (1985) Heavy residues following 5–10 MeV/nucleon 12C- and 14N- induced reactions on Sm and Pr targets. Phys Rev C 32:1612

    Article  CAS  Google Scholar 

  8. Koning AJ, Hilarie S, Duijvestijn M C (2005) Proceedings of the International Conference on Nuclear Data for Science and Technology, ND2004, AIP 769, eds. R. C. Haight, M. B. Chadwick, T. Kawano, and P. Talou, Sep. 26–Oct. 1, 2004, Santa Fe, USA, p 1154

  9. Maiti M, Lahiri S, Tomar BS (2012) Separation of no-carrier-added 149Gd from 12C activated natural praseodymium matrix. J Radioanal Nucl Chem 291:427

    Article  CAS  Google Scholar 

  10. Lahiri S, Maiti M (2012) Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim Acta 100:85

    Article  CAS  Google Scholar 

  11. Maiti M, Lahiri S (2009) Theoretical approach to explore the production routes of astatine radionuclides. Phys Rev C 79:024611

    Article  Google Scholar 

  12. Maiti M, Lahiri S (2011) Production cross section of At radionuclides from 7Li + natPb and 9Be + natTl reactions. Phys Rev C 84:067601

    Article  Google Scholar 

  13. Maiti M, Lahiri S (2009) Production and separation of no-carrier-added 208,209,210At produced from heavy ion activation on natural thallium target. J Radioanal Nucl Chem 281:501

    Article  CAS  Google Scholar 

  14. Maiti M, Lahiri S (2010) New routes for production of proton rich Tc isotopes. Phys Rev C 81:024603

    Article  Google Scholar 

  15. Maiti M, Dutta B, Lahiri S (2010) Separation of no-carrier-added 93,94,94m,95,96Tc from 7Li induced natural Zr target by liquid–liquid extraction. Appl Radiat Isot 68:42

    Article  CAS  Google Scholar 

  16. Maiti M, Lahiri S (2009) Production and separation of no-carrier-added 93,94,95Tc from 9Be activated Yttrium target. Radiochim Acta 97:663

    Article  CAS  Google Scholar 

  17. Lahiri S, Mukhopadhyay B, Das NR (1997) Simultaneous production of 89Zr and 90,91m,92mNb in alpha-particle activated yttrium and their subsequent separation by HDEHP. Appl Radiat Isot 48:883

    Article  CAS  Google Scholar 

  18. Das NR, Singh K, Lahiri S (1993) Liquid-liquid-extraction and reversed-phase chromatographic-separation of parent–daughter, 95Zr-95Nb with TOA. Radiochim Acta 62:213

    CAS  Google Scholar 

  19. Das NR, Lahiri S (1992) Reversed phase chromatographic separation of zirconium, niobium and hafnium tracers with HDEHP. J Radioanal Nucl Chem 163:213

    Article  CAS  Google Scholar 

  20. Maiti M, Lahiri S (2011) Production and separation of 97Ru from 7Li activated natural niobium. Radiochim Acta 99:359

    Article  CAS  Google Scholar 

  21. Maiti M, Lahiri S (2011) Separation of no-carrier-added ruthenium from 12C irradiated natural yttrium target by aqueous biphasic extraction. In: 3rd International Nuclear Chemistry Congress, Ed. F Groppi, pp18

  22. Maiti M, Lahiri S (2010) Separation of no-carrier-added 90Nb from proton induced natural zirconium target. J Radioanal Nucl Chem 283:637

    Article  CAS  Google Scholar 

  23. Dutta B, Maiti M, Lahiri S (2009) Production of 88,89Zr by proton induced activation of natY and separation by SLX and LLX. J Radioanal Nucl Chem 281:663

    Article  CAS  Google Scholar 

  24. Maiti M, Lahiri S, Tomar BS (2011) Separation of no-carrier-added 107,109Cd from proton induced silver target: classical chemistry still relevant. J Radioanal Nucl Chem 288:115

    Article  CAS  Google Scholar 

  25. Lahiri S, Nayak D (2002) Tracer packet: a new conception for the production of tracers of micronutrient element. J Radioanal Nucl Chem 254:619

    Article  Google Scholar 

  26. Nayak D, Lahiri S, Ramaswami A (2002) Alternative radiochemical heavy ion activation method for production and separation of thallium radionuclides. Appl Radiat Isotopes 57:483

    Article  CAS  Google Scholar 

  27. Dutta B, Maiti M, Lahiri S (2011) Production and separation of no-carrier-added thallium isotopes from proton irradiated natHg2Cl2 matrix. Appl Radiat Isot 69:1337

    Article  CAS  Google Scholar 

  28. Maiti M (2011) Probable nuclear reactions to produce proton rich rhenium radionuclides. J Radioanal Nucl Chem 290:11

    Article  CAS  Google Scholar 

  29. Maiti M, Dutta B, Das A, Dutta C, Lahiri S (2011) Studies on the separation of Re from bulk W and Hf simulating W(p,xn)181−186Re and natHf(7Li,xn)181−184Re reactions. In: Nuclear and Radiochemistry Symposium, Eds: RM Sawant, SK Sali, M Venkatesh, V Venugopal, NUCAR-2011, Vol 2, p463

  30. Lahiri S, Sarkar S (2007) Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: a greener approach. Appl Radiat Isot 65:387

    Article  CAS  Google Scholar 

  31. Sarkar S, Nayak D, Lahiri S (2007) Studies on the interaction of poly(N-vinylpyrrolidone) with no-carrier-added 61Cu, 62Zn, 66Ga, 69Ge, 71As using tracer packet technique. Radiochim Acta 95:467

    Article  CAS  Google Scholar 

  32. Maiti M, Sen K, Sen S, Lahiri S (2011) Studies on stabilities of some human chorionic gonadotropin complexes with β-emitting radionuclides. Appl Radiat Isot 69:316

    Article  CAS  Google Scholar 

  33. Maiti M, Nandy M, Roy SN, Sarkar PK (2004) An empirical expression to calculate thick target neutron yield distributions from proton induced reactions. Nucl Instrum Meth B 215:317

    Article  CAS  Google Scholar 

  34. Maiti M, Nandy M, Roy SN, Sarkar PK (2003) An empirical fit to estimated neutron emission cross sections from proton induced reactions. Pramana-J Phys 60:143

    Article  CAS  Google Scholar 

  35. Maiti M, Roy SN, Nandy M, Sarkar PK (2005) Systematics and empirical expressions for neutron emission from thick targets in α-induced reactions. Phys Rev C 71:034601

    Article  Google Scholar 

  36. Maiti M, Nandy M, Roy SN, Sarkar PK (2004) Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements. Nucl Instrum Meth B 226:585

    CAS  Google Scholar 

  37. Nandy M, Bandyopadhyay T, Maiti M, Sarkar PK (2005) Radiation safety aspects of a 30 MeV proton cyclotron. Rad Prot Environ 28:136

    Google Scholar 

  38. Maiti M, Nandy M, Roy SN, Sarkar PK (2007) Light charged particle emission from neutron and α-induced reactions. Appl Radiat Isot 65:656

    Article  CAS  Google Scholar 

  39. Maiti M, Roy SN, Nandy M, Sarkar PK (2005) Angular distribution of neutrons from heavy ion induced reactions in thick targets. Nucl Instrum Meth A 556:577

    Article  Google Scholar 

  40. Sunil C, Maiti M, Nandy M, Sarkar PK (2007) Thick target neutron dose evaluation for 19F + Al system. Rad Prot Dos 123:277

    Article  CAS  Google Scholar 

  41. Nandy M, Sunil C, Maiti M, Palit R, Sarkar PK (2007) Estimation of angular distribution of neutron dose using time-of-flight for 19F + Al system at 110 MeV. Nucl Instrum Meth A 576:380

    Article  CAS  Google Scholar 

  42. Sunil C, Nandy M, Bandyopadhyay T, Maiti M, Shanbhag AA, Sarkar PK (2008) Neutron dose equivalent from 100 MeV 19F projectiles on thick Cu target. Radiat Meas 43:1278

    Article  CAS  Google Scholar 

  43. Sunil C, Shanbhag AA, Nandy M, Maiti M, Bandyopadhyay T, Sarkar PK (2009) Direction distribution of ambient neutron dose equivalent from 20 MeV protons incident on thick Be and Cu targets. Rad Prot Dos 136:67

    Article  CAS  Google Scholar 

  44. Sunil C, Maiti M, Nandy M, Sharma PS, Dingankar MV, Sarkar PK (2005) Thick target neutron dose evaluation for 19F + Al system. Rad Prot Environ 28:209

    Google Scholar 

Download references

Acknowledgments

I sincerely acknowledge my collaborators for their contributions and advice in original work. My sincere thanks go to the Council of Scientific and Industrial Research (CSIR) for providing necessary grants. This work is as part of the Saha Institute of Nuclear Physics-Department of Atomic Energy, XI five year plan project “Trace Analysis: Detection, Dynamics and Speciation (TADDS)” and XII five year plan project “Trace Ultratrace Analysis and Isotope Production (TULIP)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, M. Nuclear and chemical data for life sciences. J Radioanal Nucl Chem 297, 319–329 (2013). https://doi.org/10.1007/s10967-012-2345-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2345-2

Keywords

Navigation