Skip to main content
Log in

Generation of metaimages while analysis of the time series autoradiograms

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To increase selectivity of activation autoradiography for the first time it has been suggested to use computer’s processing of time series of autoradiography images obtained while the sample is cooling. To preserve the spatial resolution of the method, the processing must involve all coaxial pixels of the series. For visualization of the obtained results a cross section method for generation of a set of metaimages has been developed. The generated metaimages characterize the spatial distribution of pixels for half-life values lying in the selected interval. The algorithm for testing the computational data compatibility within the preselected zone has been developed. The algorithm is based on analysis of frequency distribution of half-life values for pixels array composing the sample zone under testing. The normal distribution characterizes compatible data for homogeneous part of the sample. Using the frequency analysis, a method for generation of contrasted metaimages has been developed. The method is able to distinguish zones with half-life differences of about 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rogers AW (1967) Techniques of autoradiography. Elsevier, London, p 335

    Google Scholar 

  2. Babikova YuF, Gusakov AA, Minaev VM, Ryabova GG (1985) Analytical autoradiography. Energoatomizdat, Moscow In Russian

    Google Scholar 

  3. Vlasova IE, Kalmykov SN, Sapozhnikov YuA, Simakin SG, Anokhin AYu, Aliev RA, Tsarev DA (2006) Radiography and local microanalysis for detection and investigation of actinide-containing micro particles. Russ Radiochem 48(6):551–556

    Google Scholar 

  4. Vlasova IE, Kalmykov SN, YuV Konevnik, Simakin SG, Simakin IS, AYu Anokhin, YuA Sapozhnikov (2008) Alpha track analysis and fission track analysis for localizing actinide-bearing micro-particled in the Yenisey River bottom sediments. Radiat Meas v43:S303–S308

    Article  Google Scholar 

  5. Vinokurov SE, Slyuntchev OM, Kulyako YuM, Rovny SI, Myasoedov BF (2009) Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices. J Nucl Mater 385:189

    Article  CAS  Google Scholar 

  6. Zeissler CJ, Lindstrom RM, McKinley JP (2001) Radioactive particle analysis by digital autoradiography. J Radioanal Nucl Chem 248(2):407

    Article  CAS  Google Scholar 

  7. Kerkapoly A, Vajda N, Pinter T (2009) Film autoradiography used for hot particle identification. J Radioanal Nucl Chem 265(3):423

    Article  Google Scholar 

  8. Fujifilm’s proprietary imaging plate: http://www.fujifilm.com/products/medical/computed_radiography/#imagingPlate. Accessed 19 Sep 2012

  9. Noguchi J, Suzuki K (2001) Imaging plate characteristics of positron emitters: C-11, N-13, O-15, F-18 and K-38. Radiochim Acta 89:433–437

    Article  CAS  Google Scholar 

  10. Furukawa J, Yokota H, Tanoi T, Ueoka S, Matsuhashi S, Ishioka NS, Watanabe S, Uchida H, Tsuji A, Ito T, Mizuniwa T, Osa A, Sekine T, Hashimoto S, Nakanishi TM (2001) Vanadium uptake and an effect of vanadium treatment on 18F labeled water movement in a cowpea plant by positron emitting tracer imaging system (PETIS). J Radioanal Nucl Chem 249(2):495

    Article  CAS  Google Scholar 

  11. Kume T, Matsuhashi S, Shimizu M, ItoO H, Fujimura T, Adachi K, Uchida H, Shigeta N, Matusoka H, Osa A, Sekine T (1997) Uptake and transport tracer (18F) of positron-emitting in plants. Appl Radiat Isot 48(8):1035–1043

    Article  CAS  Google Scholar 

  12. Matsuhashi S, Fujimakia S, Uchida H, Ishioka SN, Kume T (2006) A new visualization technique for the study of the accumulation of photoassimilates in wheat grains using [11C]CO2. Appl Radiat Isot 64:435–440

    Article  CAS  Google Scholar 

  13. Watanabe S, Iida Y, Suzui N, Katabuchi T, Ishii S, Kawachi N, Watanabe S, Hanaoka H, Matsuhashi S, Endo K, Ishioka NS (2009) Production of no-carrier-added 64Cu and applications to molecular imaging by PET and PETIS as a biomedical tracer. J Radioanal Nucl Chem 280(1):199

    Article  CAS  Google Scholar 

  14. Yamawaki M, Kanno S, Ishibashi H, Noda A, Hirose A, Tanoi K, Nakanishi TM (2011) A study of 32P-phosphate uptake in a plant by a real-time RI imaging system. Proc Radiochim Acta 1:289–293. doi:10.1524/rcpr.2011.0050

    Google Scholar 

  15. Kolotov VP, Andriyanov AYu, Shilobreeva SN, Korobkov VI, Dogadkin NN, Chapyzhnikov BA, Tsipenyuk YuM (2007) Development of digital gamma-activation autoradiography for the determination of platinum group element inclusions in geological samples. J Radioanal Nucl Chem 271(3):671–678

    Article  CAS  Google Scholar 

  16. Kolotov VP, Andriyanov AYu, Dogadkin NN, Shilovreeva SN, Chapyzhnikov BA, Tsipenyuk YuM, Korobkov VI (2003) J Anal Chem 58:882

    Article  CAS  Google Scholar 

  17. Kolotov VP, Dogadkin NN, Korobkov VI, Grozdov DS (2008) Determination of platinum–palladium micro inclusions in polymetallic ores by means of digital gamma-activation autoradiography. J Radioanal Nucl Chem 278(3):739–743

    Article  CAS  Google Scholar 

  18. Kolotov VP, Grozdov DS, Dogadkin NN (2012) Enhancement of digital gamma activation autoradiography capabilities by means of computer analysis of the time series images. J Radioanal Nucl Chem 291(2):347–352

    Article  CAS  Google Scholar 

  19. Kolotov VP, Grozdov DS, Dogadkin NN, Korokbov VI (2011) Development of digital gamma-activation autoradiography for analysis of samples of large area. Proc Radiochim Acta 1(1):299–303. doi:10.1524/rcpr.2011.0052

    Google Scholar 

Download references

Acknowledgments

The work is supported by the Russian Fund for Basic Research (Grant No. 10-03-00140-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Kolotov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolotov, V.P., Grozdov, D.S. & Dogadkin, N.N. Generation of metaimages while analysis of the time series autoradiograms. J Radioanal Nucl Chem 296, 991–996 (2013). https://doi.org/10.1007/s10967-012-2137-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2137-8

Keywords

Navigation