Skip to main content
Log in

Distribution of 131I, 134Cs, 137Cs and 239,240Pu concentrations in Korean rainwater after the Fukushima nuclear power plant accident

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radionuclides such as 131I, 134Cs, 137Cs, and 239,240Pu in Korean rainwater have been analyzed by Korea Research Institute of Standards and Science (KRISS) since the Fukushima nuclear power plant accident in March 2011 to investigate the activity level, distribution pattern, and temporal variation and to assess the radiation dose the public is exposed to. The concentration of 131I in the Korean rainwater samples varied between 0.033 (minimum detectable activity; MDA) and 1.30 Bq kg−1 and the concentrations tended to decrease exponentially with time. The concentrations of 134Cs and 137Cs in rainwater ranged from 0.01 to 334 ± 74 and 0.29 ± 0.01 to 276 ± 1 mBq kg−1, respectively. The mean activity ratio of 137Cs/134Cs in the rainwater samples collected from April 18 to May 12 was estimated to be 0.44 ± 0.21, and this value is lower than that (ca. 1) observed in Fukushima, Japan, when there was an escape from the nuclear reactors. When an attempt was made to analyze Pu isotopes in rainwater samples, no Pu isotopes were detected above the MDA in any of the rainwater samples. Although the locations investigated were different from Asia to Europe, the concentrations of 131I, 134Cs and 137Cs in the rainwater are comparable, which suggests a global contamination of 131I, 134Cs, and 137Cs occurred because of the Fukushima nuclear power plant accident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishikawa Y, Murakami H, Sekine T, Yoshihara K (1995) J Environ Radioact 26:19

    Article  CAS  Google Scholar 

  2. Lee S-H, Pham MK, Povinec PP (2002) J Radioanal Nucl Chem 254(3):445

    Article  CAS  Google Scholar 

  3. Hirose K (2012) J Environ Radioact 111:13

    Article  CAS  Google Scholar 

  4. Laboratoire National Henri Becquerel (2007) ISBN. 978-2-86883-973-2. EDP Sciences, Les Ulis Cedex, France

  5. Inoue M, Kofuji H, Hamajima Y, Nagao S, Yoshida K, Yamamoto M (2012) J Environ Radioact 111:116

    Article  CAS  Google Scholar 

  6. Kantei (2011). http://www.kantei.go.jp/jp/topics/2011/pdf/06-kankyo.pdf. Accessed 25 Feb 2011

  7. Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) J Environ Radioact 102:796

    Article  CAS  Google Scholar 

  8. Pittauerova D, Hettwig B, Fisher HW (2011) J Environ Radioact 102:877

    Article  CAS  Google Scholar 

  9. Leon JD, Jaffe DA, Kasper J, Knecht A, Miller ML, Robertson RGH, Schubert AG (2011) J Environ Radioact 102:1032

    Article  CAS  Google Scholar 

  10. La Rosa JJ, Burnett W, Lee S-H, Levy I, Gastaud J, Povinec PP (2001) J Radioanal Nucl Chem 248(3):765

    Article  Google Scholar 

  11. Kim CK, Byun JI, Chae JS, Choi HY, Choi SW, Kim DJ, Kim YJ, Lee DM, Park WJ, Yim SA, Yun JY (2012) J Environ Radioact 111:70

    Article  CAS  Google Scholar 

  12. Hirose K, Aoyama M, Katsuragi Y, Sugimura Y (1987) J Meteorol Soc Jpn 65:259

    CAS  Google Scholar 

  13. Hong GH, Chung CS, Lee S-H, Kim SH, Baskaran M, Lee HM, Kim YI, Yang DB, Kim CK (2006). In: Povinec PP, Sanchez-Cabeza JA (eds) Aquatic forum 2004, 25–29 Oct 2006, Monaco, Elsevier, Amsterdam, p 96

  14. Lujanien G, Bycenkiene S, Povinec PP, Gera M (2012) J Environ Radioact. doi:10.1016/j.jenvrad.2011.12.004

  15. TEPCO (2011). http://www.tepco.co.jp/en/press/corp-com/release/11032812-e.html. Accessed 25 Feb 2012

  16. Lee S-H, Chung CS, Kim SH, Lee KW (1999) J Kor Soc Atmos Environ 15(2):79

    Google Scholar 

  17. Bolsunovsky A, Dementyev D (2011) J Environ Radioact 102:1062

    Article  CAS  Google Scholar 

  18. Cosma C, Iurian AR, Nita DC, Begy R, Cîndea C (2012) J Environ Radioact. doi:10.1016/j.jenvrad.2011.11.020

  19. Piñero García F, Ferro García MA (2012) J Environ Radioact. doi:10.1016/j.jenvrad.2012.01.011

  20. Bikit I, Mrda D, Todorovic N, Nikolov J, Krmar M, Veskovic M, Slivka J, Hansman J, Forkapic S, Jovancevic N (2012) J Environ Radioact. doi:10.1016/j.jenvrad.2012.01.020

  21. Perrot F, Hubert Ph, Marquet Ch, Pravikoff MS, Bourquin P, Chiron H, Guernion P-Y, Nachab A (2012) J Environ Radioact. doi:10.1016/j.jenvrad.2011.12.026

  22. Pham MK, Eriksson M, Levy I, Nies H, Osvath I, Betti M (2012) J Environ Radioact. doi:10.1016/j.jenvrad.2012.01.010

Download references

Acknowledgments

This work was supported by the Korea Research Institute of Standards and Science under the project “Metrology for Safe Korea”, Grant No. 11011106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Han Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Heo, DH., Kang, HB. et al. Distribution of 131I, 134Cs, 137Cs and 239,240Pu concentrations in Korean rainwater after the Fukushima nuclear power plant accident. J Radioanal Nucl Chem 296, 727–731 (2013). https://doi.org/10.1007/s10967-012-2030-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2030-5

Keywords

Navigation