Skip to main content
Log in

Removal of cobalt and strontium from groundwater by sorption onto fishbone

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fishbone as a main backfill material of permeable reactive barrier to remediate groundwater contaminated with Co and Sr was investigated through single- and bi-solute competitive sorptions. The single-solute sorption data were fitted by Freundlich, Langmuir and Dubinin-Radushkevich models. The coefficients of determination (R 2 > 0.91) indicated that all models fitted well. Maximum sorption capacities (q mL ) of Co and Sr predicted by the Langmuir model were 0.55 mmol/g and 0.50 mmol/g, respectively. The bi-solute competitive sorption of the metals was analyzed by the Langmuir, competitive Langmuir, Sheindorf-Rebhun-Sheintuch (SRS) and P-factor models. The sorbed amount of one solute in bi-solute system decreased due to competition with the other solute. Langmuir model parameters for single- (q mL and b L ) and bi-solute (q * mL and b * L ) competitive sorptions were compared to analyze the effect of competition between the metals. The competitive Langmuir, SRS and P-factor models predicted the bi-solute competitive sorption data well (R 2 > 0.93).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

b L :

Langmuir model constant (L/mmol)

b L,i :

Langmuir model constant of a solute i in single-solute sorption (L/mmol)

b * L,i :

Langmuir model constant of a solute i in bi-solute competitive sorption (L/mmol)

C :

Aqueous-phase equilibrium concentration (mmol/L)

C 0 :

Initial concentration (mmol/L) of metal in aqueous solution

C m,i :

Aqueous-phase equilibrium concentration (mmol/L) of a solute i in multi-solute competitive sorption

CLM:

Competitive Langmuir model

E :

Mean free energy (kJ/mol) in Dubinin-Radushkevich model

K F :

Freundlich sorption coefficient [(mmol/g)/(mmol/L)\( ^{{N_{F} }} \)]

K F,i :

Freundlich sorption coefficient obtained from a single-solute system [(mmol/g)/(mmol/L)\( ^{{N_{F} }} \)]

N d :

The number of data points

N F :

Exponent in Freundlich model

N F,i :

Exponent in Freundlich model obtained from a single-solute system

P :

The number of parameters

P i :

P-factor model parameter

q :

Solid-phase equilibrium concentration (mmol/g)

q i,exp :

Solid-phase equilibrium concentration of the experimental data (mmol/g)

q i,pred :

Solid-phase equilibrium concentration of theoretically predicted points (mmol/g)

q m,i :

Solid-phase equilibrium concentration of a solute i in multi-solute competitive sorption (mmol/g)

q mD :

Maximum sorption capacity of Dubinin-Radushkevich model (mmol/g)

q mL :

Maximum sorption capacity of Langmuir model (mmol/g)

q mL,i :

Maximum sorption capacity of solute i in single-solute sorption predicted by Langmuir model (mmol/g)

q * mL,i :

Maximum sorption capacity of solute i in bi-solute competitive sorption predicted by Langmuir model (mmol/g)

R:

Gas constant, 8.314 (J/mole/K)

R 2 :

Coefficient of determination

R L :

Separation factor

RMSE:

Root mean square error

rss:

Residual sum of squares

SSE:

Sum of squared errors

T:

Absolute temperature (K)

α:

SRS model coefficient

α i,j :

Dimensionless competition coefficient for the sorption of solute i in the presence of solute j predicted by SRS model

β:

Dubinin-Radushkevich model parameter (mol2/J2)

ε:

Polanyi potential (J/mol)

References

  1. ASTDR (Agency for Toxic Substances and Disease Registry) (2004) Toxicological profile for cobalt. US Department of Health and Human Services, Public Health Service

  2. ASDTR (Agency for Toxic Substances and Disease Registry) (2004) Toxicological profile for strontium. US Department of Health and Human Services, Public Health Service

  3. Conca JL, Wright J (2006) Appl Geochem 21:1288–1300

    Article  CAS  Google Scholar 

  4. Morrison SJ, Metzler DR, Dwyer BP (2002) J Contam Hydrol 56:99–116

    Article  CAS  Google Scholar 

  5. El-Kamash AM (2008) J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  6. Simon F-G, Biermann V, Segebade C, Hedrich M (2004) Sci Total Environ 326:249–256

    Article  CAS  Google Scholar 

  7. Admassu W, Breese T (1999) J Hazard Mater 69:187–196

    Article  CAS  Google Scholar 

  8. Dimović S, Smičiklas I, Plećaš I, Antonović D, Mitrić M (2009) J Hazard Mater 164:279–287

    Article  Google Scholar 

  9. Smičiklas I, Dimović S, Plećaš I, Mitrić M (2006) Water Res 40:2267–2274

    Article  Google Scholar 

  10. Simon F-G, Segebade C, Hedrich M (2003) Sci Total Environ 307:231–238

    Article  CAS  Google Scholar 

  11. Versada J, Hradil D, Řanda Z, Jelínek E, Štulík K (2005) Appl Clay Sci 30:53–66

    Article  Google Scholar 

  12. USEPA (2007) Method 9081: cation-exchange capacity of soils (sodium acetate), Test methods for the evaluation of solid waste: laboratory manual physical chemical methods, SW-846, Washington, DC, USEPA, Office of Solid Waste

  13. Smiciklas I, Dimovic S, Sljivic M, Plecas I (2008) J Environ Sci Health Part A 43:210–217

    CAS  Google Scholar 

  14. Wolff-Boenisch D, Traina SJ (2006) Geochim Cosmochim Acta 70:4356–4366

    Article  CAS  Google Scholar 

  15. Kundu S, Gupta AK (2006) Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  16. Sheindorf C, Rebhun M, Sheintuch M (1881) J Colloid Interf Sci 79:136–142

    Article  Google Scholar 

  17. Srivastava VC, Mall ID, Mishra IM (2006) Chem Eng J 117:79–91

    Article  CAS  Google Scholar 

  18. Valderrama C, Barios JI, Rarran A, Cortina JL (2010) Water Air Soil Pollut 210:421–434

    Article  CAS  Google Scholar 

  19. Choy KKH, Proter JF, Mckay G (2000) J Chem Eng Data 45:575–584

    Article  CAS  Google Scholar 

  20. Corami A, Mignardi S, Ferrini V (2008) J Colloid Interf Sci 317:402–408

    Article  CAS  Google Scholar 

  21. Ma B, Shin WS, Oh S, Park Y-J, Choi S-J (2010) Sep Sci Technol 45:453–462

    Article  CAS  Google Scholar 

  22. Changtawong V, Harvey NW, Bashkin VN (2003) Water Air Soil Pollut 148:111–125

    Article  Google Scholar 

  23. Lazić S, Vuković Ž (1991) J Radioanal Nucl Chem 149:161–168

    Article  Google Scholar 

  24. McKay G, Blair HS, Gardner JR (1982) J Appl Polym Sci 27:3040–3057

    Google Scholar 

  25. Wang LM, Chen J, Ewing RC (2004) Curr Opin Solid State Mater Sci 8:405–418

    Article  CAS  Google Scholar 

  26. Handley-Sidhu S, Renshaw JC, Moriyama S, Stolpe B, Mennan C, Bagheriasl S, Yong P, Stamboulis A, Paterson-Beedle M, Sasaki K, Pattrick RAD, Lead JR, Macaskie LE (2011) Environ Sci Technol 45:6985–6990

    Article  CAS  Google Scholar 

  27. Lazarević S, Janković-Častvan I, Tanasković D, Pavićević V, Janaćković Dj, Petrović R (2008) J Environ Eng 134:683–688

    Article  Google Scholar 

  28. Rosskopfová O, Galamboš M, Rajec P (2011) J Radioanal Nucl Chem 287:715–722

    Article  Google Scholar 

  29. Gómez del Río JA, Morando PJ, Cicerone DS (2004) J Environ Manage 71:169–177

    Article  Google Scholar 

  30. Park Y, Shin WS, Choi S-J (2012) J Radioanal Nucl Chem 292:837–852

    Article  CAS  Google Scholar 

  31. Khan SA, Rehman RU, Khan MA (1995) Waste Manag 15:641–650

    Article  CAS  Google Scholar 

  32. Bhattacharyya KG, Gupta SS (2007) Sep Sci Technol 42:3391–3418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government, the Ministry of Education, Science and Technology (grant number: M20709005401-07B0900-40110). The authors would like to acknowledge the Korea Basic Science Institute (Daegu) and Kyungpook National University Center for Scientific Instrument for SEM–EDS, XRF and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Sik Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Shin, W.S. & Choi, SJ. Removal of cobalt and strontium from groundwater by sorption onto fishbone. J Radioanal Nucl Chem 295, 789–799 (2013). https://doi.org/10.1007/s10967-012-1959-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1959-8

Keywords

Navigation