Skip to main content
Log in

Separation of Zr and Hf from strong hydrochloric acid solution by solvent extraction with TEHA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to separate Zr(IV) and Hf(IV) from chloride solutions, TEHA (tri 2-ethyl hexyl amine) was used as an extractant. The aqueous phase consisted of 200 ppm of Zr and Hf in strong HCl solution. In our solvent extraction system, the extractability of the constituents by TEHA was found to be in the following order, HCl > Zr(IV) > Hf(IV). The highest separation factor between the two metals was obtained from 8 M HCl solution. Based on the selectivity towards Zr over Hf with TEHA, McCabe–Thiele plot was constructed and batch simulation of counter-current extraction studies has been conducted. Scrubbing results from the loaded TEHA showed that Hf was selectively scrubbed over Zr by strong HCl solution (9 M). Complete stripping of Zr was possible from the organic phase with distilled water after scrubbing of Hf. The extraction behavior of Zr and Hf by TEHA was compared with that by TiOA and TOA. Our results can be utilized in developing a solvent extraction process to separate Zr and Hf from concentrated chloride solutions by using TEHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elvers B, Hawkins S, Ravenscroft M, Rounsaville JF, Sculz G (1989) Ulmann’s encyclopedia of industrial chemistry. VCH, Weinhein

    Google Scholar 

  2. Prohit R, Devi S (1997) Talanta 44:319–326

    Article  Google Scholar 

  3. Vinarov IV (1967) Russ Chem Rev 36:522–536

    Article  Google Scholar 

  4. Moulin L, Thouvenin P, Brun P (1984) ASTM Spec Tech Publ 824:37–44

    CAS  Google Scholar 

  5. Da Silva ABV, Distin PA (1988) CIM Bull 91:221–224

    Google Scholar 

  6. Nandi B, Das NR, Battacharya SN (1983) Solvent Extr Ion Exch 1:141–202

    Article  CAS  Google Scholar 

  7. Guccione E (1963) Chem Eng 70:128

    CAS  Google Scholar 

  8. Sathiyamurthy D, Shetty SM, Bose DK, Gupta CK (1999) High Temp Mater Process 18:213–226

    Google Scholar 

  9. Das NR, Lahiri S (1991) Solvent Extr Ion Exch 9:337–381

    Article  CAS  Google Scholar 

  10. Hubicki Z (1988) Solvent Extr Ion Exch 6:183–205

    Article  CAS  Google Scholar 

  11. Trubet D, Monroy Guzman F, Le Naour C, Brillard L, Hussonnois M, Constantinescu O (1998) Anal Chimica Acta 374:149–158

    Article  Google Scholar 

  12. Pin C, Joannon S (2002) Talanta 57:393–403

    Article  CAS  Google Scholar 

  13. Kraus KA, Moore GE (1949) Separation of zirconium and hafnium with anion exchange resins. J Am Chem Soc 71:3263

    Article  CAS  Google Scholar 

  14. Voit OD (1992) US Patent, No. 5132016

  15. Hure J, Rastoix M, Sanit-James R (1961) Anal Chim Acta 25:118–128

    CAS  Google Scholar 

  16. Karve MA, Khopkar SM (1992) Anal Sci 8:237–241

    Article  CAS  Google Scholar 

  17. Dasilva A, El-ammouri E, Distin PA (2000) Can Metall Q 39:37–42

    Article  CAS  Google Scholar 

  18. Gupta B, Malik P, Madhur N (2005) Solvent Extr Ion Exch 23:345–357

    Article  CAS  Google Scholar 

  19. Taghizadeh M, Ghanadi M, Zolfonoun E (2011) J Nucl Mater 412:334–337

    Article  CAS  Google Scholar 

  20. Smolik M, Jakobik-Kolon A, Poranski M (2009) Hydrometallurgy 95:350–353

    Article  CAS  Google Scholar 

  21. Cerrai E, Testa C (1959) Energia Nucl 6:707 and 768 Chem Abstr 54:10713h

  22. Sato T, Good ML, Watanabe H, Kotani S, Yamamoto M (1976) Anal Chim Acta 84:397–408

    Article  CAS  Google Scholar 

  23. Vibhute CP, Khopkar SM (1987) Anal Chim Acta 193:387–392

    Article  CAS  Google Scholar 

  24. Yang XJ, Pin C (1999) Anal Chem 71:1706–1711

    Article  CAS  Google Scholar 

  25. Yang XJ, Pin C, Fane AG (1999) J Chromatogr Sci 37:171–179

    CAS  Google Scholar 

  26. Yang XJ, Fane AG, Pin C (2002) Chem Eng J 88:45–51

    Article  CAS  Google Scholar 

  27. MacDonald DJ (1980) US Patent, No. 4231994

  28. El-Yamani IS, Farah MY, El-Aleim FA (1978) Talanta 25:523–525

    Article  CAS  Google Scholar 

  29. El-Yamani IS, Farah MY, El-Aleim FAA (1978) Talanta 25:714–716

    Article  CAS  Google Scholar 

  30. Mishra PK, Chakravortty V, Dash KC, Das NR, Bhattacharya SN (1989) J Radioanal Nucl Chem Art 134:259–264

    Article  CAS  Google Scholar 

  31. Mishra PK, Chakravortty V, Dash KC, Das NR, Bhattacharya SN (1992) J Radioanal Nucl Chem Art 162:289–298

    Article  CAS  Google Scholar 

  32. Poriel L, Favre-Reguillon A, Pellet-Rostaing S, Lemaire M (2006) Sep Sci Technol 41:1927–1940

    Article  CAS  Google Scholar 

  33. Vogel AI (1989) A text book of quantitative chemical analysis, 5th edn. ELBS, Longman, p 376

    Google Scholar 

  34. Raju B, Lee HY, Lee MS (2012) Ind Eng Chem Res (accepted)

  35. Sato T, Watanabe H (1971) Anal Chim Acta 54:439–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a grant from the fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Seung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banda, R., Lee, H.Y. & Lee, M.S. Separation of Zr and Hf from strong hydrochloric acid solution by solvent extraction with TEHA. J Radioanal Nucl Chem 295, 1537–1543 (2013). https://doi.org/10.1007/s10967-012-1941-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1941-5

Keywords

Navigation