Skip to main content
Log in

Radioiodinated paroxetine, a novel potential radiopharmaceutical for lung perfusion scan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Paroxetine (a selective serotonin reuptake inhibitor) was successfully labeled with 125I via direct electrophilic substitution reaction at ambient temperature. The reaction parameters studied were paroxetine amount, CAT amount, pH of the reaction mixture, reaction temperature, reaction time and in vitro stability of 125I-paroxetine. 125I-paroxetine was obtained with a maximum labeling yield of 94 ± 0.23% and in vitro stability up to 24 h. Biodistribution studies showed that maximum in vivo uptake of 125I-paroxetine in lungs was 27.89 ± 1.03% injected activity/g tissue at 15 min post-injection and retention in lungs remained high up to 1 h, whereas the clearance from mice appeared to proceed mainly via the hepatobiliary pathway. 125I-paroxetine is not a blood product and so it is more safe than the currently available 99mTc-macroaggregated albumin (99mTc-MAA), and its lung uptake is higher than that of the recently discovered 99mTc(CO)5I and 99mTc-DHPM. As a conclusion, radioiodinated paroxetine could be used as a novel radiopharmaceutical for lung perfusion scan safer than the currently available 99mTc-MAA and more potential than the recently discovered 99mTc(CO)5I and 99mTc-DHPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Christian JA, Partridge M, Nioutsikou E, Cook G, McNair HA, Cronin B, Courbon F, Bedford JL, Brada M (2005) Radiother Oncol 77(3):271–277

    Article  Google Scholar 

  2. Pettersson H, Schulthess GK, Allison DJ, Carty H, Resnick D, Baert AL, Smith HJ, Boutin RD, Andersson I, Grenier P, Ringertz H, Coakley F, Hricak H, Higgins CB, Hermans R, Scotti G (1998) Encycl Med Imaging 1:343

    Google Scholar 

  3. Miniati M, Pistolesi M, Marini C, Ricco GD, Formichi B, Prediletto R, Allescia G, Tonelli L, Sostman HD, Giuntini C (1996) Am J Respir Crit Care Med 154:1387–1393

    CAS  Google Scholar 

  4. Tommaso B, Oboldi D, Pier LG, Francesca RM, Paola R, Gabriella N, Giampaolo G (2008) Investig Radiol 43:368–373

    Article  Google Scholar 

  5. Klaus Z, Claudia BS, Jörg P, Joachim K (2009) Ann Nucl Med 23:1–16

    Article  Google Scholar 

  6. Vijayvergiya R, Mittal BR, Grover A, Hariram V, Bhattacharya A, Singh B (2009) Int J Cardiol 20:133

    Google Scholar 

  7. Miroslavov AE, Gorshkov NI, Lumpov AL, Yalfimov AN, Suglobov DN, Ellis BL, Braddock R, Smith AM, Prescott MC, Lawson RS, Sharma HL (2009) Nucl Med Biol 36:73–79

    Article  CAS  Google Scholar 

  8. De K, Chandra S, Sarkar B, Ganguly S, Misra M (2010) J Radioanal Nucl Chem 283:621–628

    Article  CAS  Google Scholar 

  9. Suhara T, Sudo Y, Yoshida K, Okubo Y, Fukuda H, Obata T, Yoshikawa K, Suzuki K, Sasaki Y (1998) Lancet 351:332–335

    Article  CAS  Google Scholar 

  10. Katzman MA (2009) CNS Drugs 23(2):103–120

    Article  CAS  Google Scholar 

  11. Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR, Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen HU (2005) J Psychopharmacol 19:567–596

    Article  CAS  Google Scholar 

  12. Baldwin D, Bobes J, Stein DJ, Scharwachter I, Faure M (1999) Br J Psychiatry 175:120–126

    Article  CAS  Google Scholar 

  13. Greenwood N, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  14. Liu FEI, Youfeng HE, Luo Z (2004) Technical Reports Series No. 426. IAEA, Vienna, pp 37–52

  15. Rhodes BA (1974) J Nucl Med 4:281

    CAS  Google Scholar 

  16. Adam MJ, Wilbur DS (2005) Chem Soc Rev 34:153–163

    Article  CAS  Google Scholar 

  17. El-Azony KM (2010) J Radioanal Nucl Chem 285:315–320

    Article  CAS  Google Scholar 

  18. Tolmachev V, Bruskin A, Sivaev I, Lundqvist H, Sjöberg S (2002) Radiochim Acta 90:229

    Article  CAS  Google Scholar 

  19. Puttaswamy M, Sukhdev A, Shubha JP (2009) J Mol Catal A Chem 310:24

    Article  CAS  Google Scholar 

  20. Puttaswamy M, Vaz N (2003) Transit Met Chem 28(4):409–417

    Article  Google Scholar 

  21. Ramalingaiah H, Jagadeesh RV, Puttaswamy M (2007) J Mol Catal A Chem 265:70

    Article  CAS  Google Scholar 

  22. Motaleb MA, Moustapha ME, Ibrahim IT (2011) J Radioanal Nucl Chem 289:239–245

    Article  CAS  Google Scholar 

  23. Henderson RF, Bechtold WE, Medinsky MA, Fischer J, Lee TT (1988) Toxicol Appl Pharmacol 95(5):15–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Motaleb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motaleb, M.A., El-Kolaly, M.T., Rashed, H.M. et al. Radioiodinated paroxetine, a novel potential radiopharmaceutical for lung perfusion scan. J Radioanal Nucl Chem 292, 629–635 (2012). https://doi.org/10.1007/s10967-011-1499-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1499-7

Keywords

Navigation