Skip to main content
Log in

Assessing thermochromatography as a separation method for nuclear forensics: current capability vis-à-vis forensic requirements

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nuclear forensic science has become increasingly important for global nuclear security. However, many current laboratory analysis techniques are based on methods developed without the imperative for timely analysis that underlies the post-detonation forensics mission requirements. Current analysis of actinides, fission products, and fuel-specific materials requires time-consuming chemical separation coupled with nuclear counting or mass spectrometry. High-temperature gas-phase separations have been used in the past for the rapid separation of newly created elements/isotopes and as a basis for chemical classification of that element. We are assessing the utility of this method for rapid separation in the gas-phase to accelerate the separations of radioisotopes germane to post-detonation nuclear forensic investigations. The existing state of the art for thermochromatographic separations, and its applicability to nuclear forensics, will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

τo :

Oscillatory period of molecule (s)

ΔH a :

Adsorption enthalpy (J kg−1)

T :

Temperature (K)

τa :

Surface adsorption period (s)

R :

Gas constant (J mol K−1)

T 0 :

Standard temperature (273 K) (K)

T s :

Starting temperature (K)

T a :

Adsorption temperature (K)

g :

Linear temperature gradient (K cm)

u 0 :

Gas velocity (cm s−1)

ΔS :

Adsorption entropy (J kg−1)

S :

Free surface area (cm2)

v :

Free volume (cm3)

V/A :

Ratio of standard molar volume to standard molar surface (cm)

T iso :

Column temperature of isothermal column (K)

L :

Column length (cm)

h :

Planck constant (cm kg s−1)

k :

Boltzmann constant (cm kg s−2 K−1)

D :

Column diameter (cm)

M :

Molecular weight (amu)

σ:

Standard deviation (K)

\( \bar{T} \) :

Mean deposition temperature (K)

References

  1. Novgorodov AF, Rosch F, Korolev NA (2003) Radiochemical separations by thermochromatography. In: Vertes A, Nagy S, Klencsar Z (eds) Instrumentation, separation techniques, environmental Issues, vol 5. Kluwer Academic Publishers, New York

    Google Scholar 

  2. Curie P, Sklodowska C (1898) Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 127:175–178

    Google Scholar 

  3. Beyer GJ, Novgorodov AF, Khalkin VA (1978) Sov Radiochem 20:507–514

    Google Scholar 

  4. Dienstbach F, Bachmann K (1983) Radiochim Acta 34(4):215–217

    CAS  Google Scholar 

  5. Domanov VP, Eichler B, Zvara I (1984) Sov Radiochem 26(1):63–72

    Google Scholar 

  6. Hickmann U, Greulich N, Trautmann N, Gäggeler H, Gäggeler-Koch H, Eichler B, Herrmann G (1980) Nucl Instrum Methods 174(3):507–513

    Article  CAS  Google Scholar 

  7. Steffen A, Bachmann K (1978) Talanta 25(11–12):677–683

    Article  CAS  Google Scholar 

  8. Vahle A, Hubener S, Dressler R, Eichler B, Turler A (1997) Radiochim Acta 78:53–57

    CAS  Google Scholar 

  9. Vahle A, Hubener S, Eichler B (1995) Radiochim Acta 69:233–239

    CAS  Google Scholar 

  10. Yakushev A, Eichler B, Turler A, Gaggeler HW, Peterson J (2003) Radiochim Acta 91(3):123–126

    Article  CAS  Google Scholar 

  11. Eichler B, Zvara I (1982) Radiochim Acta 30:233–238

    CAS  Google Scholar 

  12. Eichler B, Eichler R (2003) Gas-phase adsorption chromatographic determination of thermochemical data and empirical methods for their estimation. In: Schadel M (ed) The chemistry of superheavy elements. Kluwer Academic Publishers, Darmsadt, pp 205–236

    Google Scholar 

  13. Domanov VP, Zvara I (1984) Sov Radiochem 26(6):731–739

    Google Scholar 

  14. Gaggeler H, Eichler B, Greulich N, Herrmann G, Trautmann N (1986) Radiochim Acta 40(3):137–143

    Google Scholar 

  15. Eichler B, Baltensperger U, Ammann M, Jost DT, Gaggeler HW, Turler A (1995) Radiochim Acta 68(1):41–49

    CAS  Google Scholar 

  16. Dullmann CE, Bruchle W, Dressler R, Eberhardt K, Eichler B, Eichler R, Gaggeler HW, Ginter TN, Glaus F, Gregorich KE, Hoffman DC, Jager E, Jost DT, Kirbach UW, Lee DM, Nitsche H, Patin JB, Pershina V, Piguet D, Qin Z, Schadel M, Schausten B, Schimpf E, Schott HJ, Soverna S, Sudowe R, Thorle P, Timokhin SN, Trautmann N, Turler A, Vahle A, Wirth G, Yakushev AB, Zielinski PM (2002) Nature 418(6900):859–862. doi:10.1038/nature00980

    Article  CAS  Google Scholar 

  17. Eichler B, Zimmermann HP, Gaggeler HW (2000) J Phys Chem A 104(14):3126–3131

    Article  CAS  Google Scholar 

  18. Eichler B, Zude F, Fan W, Trautmann N, Herrmann G (1992) Radiochim Acta 56(3):133–140

    CAS  Google Scholar 

  19. Eichler B, Zude F, Fan W, Trautmann N, Herrmann G (1993) Radiochim Acta 61(2):81–90

    CAS  Google Scholar 

  20. Eichler R, Aksenov NV, Belozerov AV, Bozhikov GA, Chepigin VI, Dressler R, Dmitriev SN, Gaggeler HW, Gorshkov VA, Haenssler F, Itkis MG, Lebedev VY, Laube A, Malyshev ON, Oganessian YT, Petruschkin OV, Piguet D, Rasmussen P, Shishkin SV, Shutov AV, Svirikhin AI, Tereshatov EE, Vostokin GK, Wegrzecki M, Yeremin AV (2007) Nucl Phys A 787:373C–380C. doi:10.1016/J.Nuclphysa.2006.12.058

    Article  CAS  Google Scholar 

  21. Eichler R, Bruchle W, Buda R, Burger S, Dressler R, Dullmann CE, Dvorak J, Eberhardt K, Eichler B, Folden CM III, Gaggeler HW, Gregorich KE, Haenssler F, Hoffman DC, Hummrich H, Jager E, Kratz JV, Kuczewski B, Liebe D, Nayak D, Nitsche H, Piguet D, Qin Z, Rieth U, Schadel M, Schausten B, Schimpf E, Semchenkov A, Soverna S, Sudowe R, Trautmann N, Thorle P, Turler A, Wierczinski B, Wiehl N, Wilk PA, Wirth G, Yakushev AB, von Zweidorf A (2006) Radiochim Acta 94(4):181–191

    Article  CAS  Google Scholar 

  22. Soverna S, Dressler R, Duellmann CE, Eichler B, Eichler R, Gaeggeler HW, Haenssler F, Niklaus JP, Piguet D, Qin Z, Tuerler A, Yakushev AB (2005) Radiochim Acta 93(1):1–8

    Article  CAS  Google Scholar 

  23. Zhang L, Jin GM, Zhao JH, Yang WF, Yang YF, Zhao ZZ, Zheng JW, Sun XR, Wang JC, Li ZW, Qin Z, Guo GH, Luo YX, Jan ZL, Zhang JY (1994) Phys Rev C 49(2):R592–R596

    CAS  Google Scholar 

  24. Eichler R, Eichler B, Gaggeler HW, Jost DT, Dressler R, Turler A (1999) Radiochim Acta 87(3–4):151–159

    CAS  Google Scholar 

  25. Ono S, Kaneko T, Goto S, Kudo H (2003) J Radioanal Nucl Chem 255(3):571–574

    Article  CAS  Google Scholar 

  26. Hohn A, Eichler R, Eichler B (2004) Radiochim Acta 92(8):513–516

    Article  CAS  Google Scholar 

  27. Eichler R, Schadel M (2001) A Monte-Carlo model of macuum thermochromatography. GSI Scientific Report, Darmstadt

    Google Scholar 

  28. Eichler R, Schaedel M (2002) J Phys Chem B 106(21):5413–5420

    Article  CAS  Google Scholar 

  29. Eichler R, Soverna S, PUBGTMF U (2003) Phys At Nucl 66(6):1146–1151

    Article  CAS  Google Scholar 

  30. Sattarov G, Kist AA, Davydov AV, Khatamov S (1985) Sov Radiochem 27(6):729–735

    Google Scholar 

  31. Bayar B, Novgorodov AF, Vocilka I, Zaitseva NG (1975) Radiochem Radioanal Lett 22(1):53–62

    Google Scholar 

  32. Bogl W, Bachmann K (1975) J Inorg Nucl Chem 37:1115–1119

    Article  Google Scholar 

  33. Chuburkov YT, Seb NH, Alpert LK, Zvara I (1995) Radiochemistry 37(6):488–496

    Google Scholar 

  34. Davidov AV, Travnikov SS, Myasedov BF (1973) J Radioanal Chem 14:285–293

    Article  Google Scholar 

  35. Domanov VP, Zin KU (1989) Sov Radiochem 31(2):160–163

    Google Scholar 

  36. Eichler B, Adams J, Eichler R, Gaggler HW, Peterson J (2002) Radiochim Acta 90(12):895–897

    Article  CAS  Google Scholar 

  37. Eichler R, Eichler B, Gaggeler HW, Jost DT, Piguet D, Turler A (2000) Radiochim Acta 88(2):87–93

    Article  CAS  Google Scholar 

  38. Fan W, Gaggeler H (1982) Radiochim Acta 31(1–2):95–97

    CAS  Google Scholar 

  39. Gartner M, Boettger M, Eichler B, Gaggeler HW, Grantz M, Hubener S, Jost DT, Pignet D, Dressler R, Turler A, Yakushev AB (1997) Radiochim Acta 78:59–68

    Google Scholar 

  40. Helas G, Hoffmann P, Bachmann K (1977) Radiochem Radioanal Lett 30(5–6):371–380

    CAS  Google Scholar 

  41. Hickmann U, Greulich N, Trautmann N, Herrmann G (1993) Radiochim Acta 60(2–3):127–132

    CAS  Google Scholar 

  42. Hubener S (1980) Radiochem Radioanal Lett 44(2):79–86

    Google Scholar 

  43. Hubener S, Eichler B, Schadel M, Bruchle W, Gregorich KE, Hoffman DC (1994) J Alloys Compd 213:429–432

    Article  Google Scholar 

  44. Hubener S, Zvara I (1980) Radiochim Acta 27(3):157–160

    Google Scholar 

  45. Hubener S, Zvara I (1982) Radiochim Acta 31(1–2):89–94

    Google Scholar 

  46. Mozzhukhin AV (1981) Sov Radiochem 23(5):630–631

    Google Scholar 

  47. Sattarov G, Kist AA, Davydov AB, Khatamov S (1984) Sov Radiochem 26(6):750–754

    Google Scholar 

  48. Schadel M, Jager E, Schimpf E, Bruchle W (1995) Radiochim Acta 68(1):1–6

    Google Scholar 

  49. Steffen A, Bachmann K (1978) Talanta 25(10):551–556

    Article  CAS  Google Scholar 

  50. Travnikov SS, Fedoseev EV, Davydov AV, Myasoedov BF (1985) J Radioanal Nucl Chem 93(4):227–236

    CAS  Google Scholar 

  51. Tsalas S, Bächmann K (1978) Anal Chim Acta 98(1):17–24

    Article  CAS  Google Scholar 

  52. Vahle A, Hubener S, Funke H, Eichler B, Jost DT, Turler A, Bruchle W, Jager E (1999) Radiochim Acta 84(1):43–51

    CAS  Google Scholar 

  53. Yakushev AB, Buklanov GV, Chelnokov ML, Chepigin VI, Dmitriev SN, Gorshkov VA, Hubener S, Lebedev VY, Malyshev ON, Oganessian YT, Popeko AG, Sokol EA, Timokhin SN, Turler A, Vasko VM, Yeremin AV, Zvara I (2001) Radiochim Acta 89(11–12):743–745

    Article  CAS  Google Scholar 

  54. Zvara I, Belov VZ, Domanov VP, Shalaevskii MR (1976) Sov Radiochem 18(3):328–334

    Google Scholar 

  55. Zvara I, Domanov VP, Khyubener Z, Shalaevskii MR, Timokhin SN, Zhuikov BL, Eichler B, Buklanov GV (1984) Sov Radiochem 26(1):72–76

    Google Scholar 

  56. Zvara I, Keller OL, Silva RJ, Tarrant JR (1975) J Chromatogr 103(1):77–83

    Article  CAS  Google Scholar 

  57. Bayar B, Novgorodov AF, Vockilka I, Zaitseva NG (1978) Radiochem Radioanal Lett 35(3):109–120

    CAS  Google Scholar 

  58. Aizenberg MI, Fedoseev EV, Travnikov SS, Davydov AV, Myasoedov BF (1987) Sov Radiochem 29(6):682–685

    Google Scholar 

  59. Chuburkov YT, Tsalertka R, Shalaevskii MR, Zvara I (1967) Sov Radiochem 9(6):599–603

    Google Scholar 

  60. Domanov VP, Khyubener Z, Shalaevskii MR, Timokhin SN, Petrov DV, Zvara I (1983) Sov Radiochem 25(1):23–28

    Google Scholar 

  61. Fedoseev EV, Aizenberg MI, Davydov AV, Myasoedov BF (1989) J Radioanal Nucl Chem Lett 136(6):395–403

    Article  CAS  Google Scholar 

  62. Fedoseev EV, Aizenberg MI, Timokhin SN, Travnikov SS, Zvara I, Davydov AV, Myasoedov BF (1987) J Radioanal Nucl Chem Lett 119(5):347–354

    Article  CAS  Google Scholar 

  63. Fedoseev EV, Travnikov SS, Korovaikov PA, Davydov AV, Myasoedov BF (1993) Radiochemistry 35(5):540–542

    Google Scholar 

  64. Hubener S, Taut S, Vahle A, Bernhard G, Fanghaenel T (2008) Radiochim Acta 96(12):781–785

    Article  CAS  Google Scholar 

  65. Wacker L, Krahenbuhl U, Eichler B (2002) Radiochim Acta 90(3):133–139

    Article  CAS  Google Scholar 

  66. Fremont-Lamouranne R, Legoux Y, Merini J, Zhuikov BL, Eichler B (1985) Thermochromatography of the actinides and their compounds. In: Freeman AJ, Keller C (eds) Handbook on the physics of the actinides. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  67. Nguyen CK, Novgorodov AV, Kaskevich M, Kolachkovski A, Khalkin VA (1984) Sov Radiochem 26(1):56–62

    Google Scholar 

  68. Eichler R, Bruchle W, Dressler R, Dullmann CE, Eichler B, Gaggeler HW, Gregorich KE, Hoffman DC, Hubener S, Jost DT, Kirbach UW, Laue CA, Lavanchy VM, Nitsche H, Patin JB, Piguet D, Schadel M, Shaughnessy DA, Strellis DA, Taut S, Tobler L, Tsyganov YS, Turler A, Vahle A, Wilk PA, Yakushev AB (2000) Nature 407(6800):63–65

    CAS  Google Scholar 

  69. Türler A, Gäggeler H, Gregorich K, Barth H, Brüchle W, Czerwinski K, Gober M, Hannink N, Henderson R, Hoffman D, Jost D, Kacher C, Kadkhodayan B, Kovacs J, Kratz J, Kreek S, Lee D, Leyba J, Nurmia M, Schädel M, Scherer U, Schimpf VermeulenD, Weber A, Zimmermann H, Zvara I (1992) J Radioanal Nucl Chem 160(2):327–339

    Google Scholar 

  70. Fargeas M, Legoux Y, Merini J (1987) J Fluor Chem 35(1):127–128

    Article  Google Scholar 

  71. Blessing G, Lavi N, Hashimoto K, Qaim SM (1994) Radiochim Acta 65(2):93–98

    CAS  Google Scholar 

  72. Blessing G, Lavi N, Qaim SM (1992) Appl Radiat Isot 43(3):455–461

    CAS  Google Scholar 

  73. Denzler FO, Rosch F, Qaim SM (1995) Radiochim Acta 68(1):13–20

    CAS  Google Scholar 

  74. Beyer G-J, Pimentel-Gonzales G (2000) Radiochim Acta 88(3–4):175–178

    Article  CAS  Google Scholar 

  75. Fassbender M, Novgorodov AF, Rosch F, Qaim SM (1994) Radiochim Acta 65(4):215–221

    CAS  Google Scholar 

  76. Novgorodov AF, Beyer GJ, Selinzki A, Kolachkovski A, Rosch F, Schomacker K (1986) Appl Radiat Isot 37(5):445–447

    CAS  Google Scholar 

  77. Novgorodov AF, Bruchertseifer F, Brockmann J, Lebedev NA, Rosch F (2000) Radiochim Acta 88:163–167

    Article  CAS  Google Scholar 

  78. Rosch F, Novgorodov AF, Qaim SM (1994) Radiochim Acta 64(2):113–120

    Google Scholar 

  79. Rosch F, Qaim SM, Novgorodov AF, Tsai YM (1997) Appl Radiat Isot 48(1):19–26

    Article  Google Scholar 

  80. Grapengiesser B, Rudstam G (1973) Radiochim Acta 20(1–2):85–90

    CAS  Google Scholar 

  81. Abdulvakhobov A, Sattarov G, Kist AA (1986) Sov Radiochem 28(2):192–197

    Google Scholar 

  82. Bachmann K, Matschoss V, Rudolph J, Steffen A, Tsalas S (1976) Nucl Instrum Methods 139:343–348

    Article  Google Scholar 

  83. Zvarova TS, Zvara I (1970) J Chromatogr A 49:290–292

    Article  CAS  Google Scholar 

  84. Rudstam G, Grapengiesser B (1973) Radiochim Acta 20(3):97–107

    CAS  Google Scholar 

  85. Zvarova TS, Zvara I (1969) J Chromatogr A 44(3–4):604–608

    Article  CAS  Google Scholar 

  86. Travnikov SS, Fedoseev EV, Davydov AV, Myasoedov BF (1985) J Radioanal Nucl Chem 93(4):217–225

    CAS  Google Scholar 

  87. Kadkhodayan B, Turler A, Gregorich KE, Baisden PA, Czerwinski KR, Eichler B, Gaggeler HW, Hamilton TM, Jost DT, Kacher CD, Kovacs A, Kreek SA, Lane MR, Mohar MF, Neu MP, Stoyer NJ, Sylwester ER, Lee DM, Nurmia MJ, Seaborg GT, Hoffman DC (1996) Radiochim Acta 72(4):169–178

    Google Scholar 

  88. Yakushev AB, Timokhin SN, Vedeneev MV, Xu HG, Zvara I (1996) J Radioanal Nucl Chem Articles 205:63–67

    Article  CAS  Google Scholar 

  89. Zvara I (1985) Radiochim Acta 38(2):95–101

    CAS  Google Scholar 

  90. Zvara I (1990) Isotopenpraxis 26(6):251–258

    Article  CAS  Google Scholar 

  91. Giddings JC, Seager SL (1960) J Chem Phys 33(5):1579–1580

    Article  CAS  Google Scholar 

  92. Zvara I (2008) Gas-solid isothermal and thermochromatography. Inorganic radiochemistry of heavy elements: methods for studying gaseous compounds. Springer Verlag, New York

    Google Scholar 

  93. Zvara I (1996) J Radioanal Nucl Chem 204(1):123–134

    CAS  Google Scholar 

  94. Deptula C, Zaitseva NG, Khan KS, Knotek O, Mikec P, Khalkin VA (1987) Sov Radiochem 29(6):759–767

    Google Scholar 

  95. Rudolph J, Bachmann K (1979) J Chromatogr A 178:459–469

    Article  CAS  Google Scholar 

  96. Schomacker K, Schwarzbach R, Beyer GJ, Novgorodov AF (1988) Appl Radiat Isot 39(6):483–485

    Google Scholar 

  97. Timokhin SN, Yakushev AB, Xu HG, Perelygin VP, Zvara I (1996) J Radioanal Nucl Chem Lett 212(1):31–34

    Article  CAS  Google Scholar 

  98. Zhuikov BL, Reetts T, Zvara I (1986) Sov Radiochem 28(2):221–226

    Google Scholar 

  99. Bachmann K (1982) Talanta 29(1):1–25

    Article  CAS  Google Scholar 

  100. Fedoseev EV, Aizenberg MI, Timokhin SN, Travnikov SS, Zvara I, Davydov AV, Myasedov BF (1990) J Radioanal Nucl Chem Articles 142(2):459–465

    Article  CAS  Google Scholar 

  101. Chuburkov YT, Belov VZ, Tsaletka R, Shalaevskii MR, Zvara I (1969) Sov Radiochem 11(4):386–390

    Google Scholar 

  102. Eichler B, Gaggelerkoch H, Gaggeler H (1979) Radiochim Acta 26(3–4):193–196

    CAS  Google Scholar 

  103. Bayar B, Vocilka I, Zaitseva NG, Novgorodov AF (1978) Radiochem Radioanal Lett 34(1):75–87

    Google Scholar 

  104. Bayar B, Zaitseva NG, Novgorodov AF (1978) Radiochem Radioanal Lett 34(1):89–98

    CAS  Google Scholar 

  105. Hoffmann P, Bächmann K (1974) J Radioanal Nucl Chem 21(2):389–393

    CAS  Google Scholar 

  106. Bayar B, Vocilka I, Zaitseva NG, Novgorodov AF (1978) J Inorg Nucl Chem 40(8):1461–1466

    Article  Google Scholar 

  107. Bayar B, Vocilka I, Zaitseva NG, Novgorodov AF (1978) Radiochem Radioanal Lett 34(1):63–73

    CAS  Google Scholar 

  108. Zvara I, Zvarova TS, Krshivanek M, Chuburkov YT (1966) Sov Radiochem 8(1):72–78

    Google Scholar 

  109. Sattarov G, Kist AA, Khatamov S (1980) Sov Radiochem 22(6):695–701

    Google Scholar 

  110. May M, Abedin-Zadeh R, Barr D, Carnesale A, Coyle PE, Davis J, Dorland W, Dunlop W, Fetter S, Glaser A, Hutcheon ID, Slakey F, Tannenbaum B (2008) Nuclear forensics: role, state of the art, program needs. American Association for the Advancement of Science and the American Physical Society, Washington, DC

    Google Scholar 

  111. Carnesale A, Adams M, Berry RS, Clark S, Davis J, Gordon J, Hoffman D, Larson M, Levenson M, Murch R, Poneman D, Wilhelmy J (2010) Nuclear forensics: a capability at risk. National Academy of Sciences, Washington, DC

    Google Scholar 

  112. Moody KJ, Hutcheon ID, Grant PM (eds) (2005) Nuclear forensic analysis. Taylor & Francis Group, Boca Raton

    Google Scholar 

  113. Nichols AL, Aldama DL MV (2008) Handbook of nuclear data for safeguards: database extentions. International Atomic Energy Agency, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Hanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, D.E., Garrison, J.R. & Hall, H.L. Assessing thermochromatography as a separation method for nuclear forensics: current capability vis-à-vis forensic requirements. J Radioanal Nucl Chem 289, 213–223 (2011). https://doi.org/10.1007/s10967-011-1063-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1063-5

Keywords

Navigation